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The Istation Indicators of Progress-Math (ISIP Math) assessment was first 

developed under the guidance of our author, Dr. Leanne Ketterlin-Geller of Southern 

Methodist University. Dr. Ketterlin-Geller and her team put together a formative 

assessment that is based on the Curriculum Focal Points published by the National 

Council of Teachers of Mathematics (NCTM). ISIP Math incorporates the content and 

cognitive engagement dimensions of assessment. The content dimension refers to the 

knowledge and skills that form the basis of mathematics instruction. The cognitive 

engagement dimension refers to the level of cognitive processing through which 

students are expected to engage with the content. Incorporating this framework makes 

the ISIP Math unique, and for that we thank Dr. Ketterlin-Geller and her team in the 

Simmons School of Education and Human Development for an innovative framework 

for assessing mathematics. We especially note the contributions of Diane Gifford, Deni 

Basaraba, Lindsay Perry, Savannah Hill, Pooja Shivraj, and Cassandra Hatfield.  

In this normative update, we had several goals including expanding the 

conceptual framework by providing domain scores, composing a vertical scale, and 

offering new, more rigorous norms.  

Math specialists Morgan Hamilton, Stephanie Noland, Melinda Smith, Jennifer 

Newell, Darey Steacy-Spigener, Sonia Blanks, and Kelly Prunty established the 

domains by reviewing the literature and aligning them with the skills and expectations 

from NCTM. They reviewed all items and assigned them to the domains. Dr. Bill Fahle, 

PhD, worked on the computer adaptive testing algorithm to provide students with 

sufficient items for calculating domain scores, and changed the algorithm to provide 

both overall and subtest scores. 

To compose the vertical scale, we worked under the consultation and guidance 

of Dr. Michael Young, PhD, of Michael J. Young Consulting, LLC. He advised us on the 

research plan for the scaling items, which were selected by Kelly Prunty and Sonia 

Blanks. Bill Fahle worked on the implementation of the scaling and linking items into 

the live assessments. The critical task of composing the new vertical scale was 

completed by Michael Young, whose decades of experience and expertise in creating 
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new scale and norms provided accurate norms that will better identify students' math 
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wrote the sections on the normative update, detailing the norming procedures.  

In addition to the technical aspect of composing new norms and scales, there 

are dozens of people working within Istation whose diligence and expertise enhanced 

this effort. Our systems teams had the task of accommodating the new features. Led by 

Bill Lowrey, Bill Fahle, and Zachary Terry, our assessments and reporting teams 

worked diligently to ensure that the reports ran correctly, and that the new scores were 

delivered accurately. David Pearson led the team of Quality Assurance analysts, who 
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readability. 
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Istation’s Indicators of Progress for Math (ISIP™ Math) is a sophisticated, web-

delivered, computer-adaptive testing (CAT) system that provides continuous progress 

monitoring (CPM) in the subject area of mathematics. 

ISIP assessments are computer-based, and teachers can arrange for entire 

classrooms to take assessments as part of scheduled computer lab time or individually 

as part of a workstation rotation conducted in the classroom. Each assessment period 

requires approximately 30 minutes. Given adequate computer resources, it would be 

feasible to administer ISIP Math to an entire classroom, school, or district in a single 

day. Classroom and individual student results illustrating each student’s past and 

present performance on mathematical concepts are available to teachers in real time. 

Teachers are alerted when a particular student is not making adequate progress so that 

the instructional program can be modified before a pattern of failure becomes 

established. 

This technical report describes the ISIP Math assessment, and the changes made 

since the assessment was released in 2015. The original version of ISIP Math divided 

the assessment into ISIP Early Math and ISIP Math. In this revision, we will refer to the 

assessment only as ISIP Math. 

For students in prekindergarten through first grade, ISIP Math provides a fun 

and engaging computer-based universal screener designed to help teachers identify 

students struggling to learn critical mathematics content. Beginning in “Mario’s 

Market,” students use their math skills in a real-life setting. ISIP Math provides teachers 

and other school personnel with easy-to-interpret, web-based reports that detail student 

strengths and deficits, helping to inform teachers’ instructional decision-making. Using 

this data allows teachers to make informed decisions about each student’s response to 

targeted mathematics instruction and intervention strategies. 

For students in grades 2 through 8, the assessment provides a testing format that 

is familiar to most students. Each item contains a question stem and four answer 

choices.  

Chapter 1: Introduction 
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ISIP Math provides links to teaching resources and targeted intervention 

strategies for all grade levels. Computer-adaptive assessments measure each student’s 

overall proficiency and mathematical ability. 

The Need to Link Math Assessment to Instructional 
Planning 

It is well established that assessment-driven instruction is effective. Teachers 

who monitor their students’ progress and use this data to inform instructional planning 

and decision-making have better student outcomes than those who do not (Conte and 

Hintze, 2000; Fuchs et al., 1992; Mathes et al., 1998). 

These teachers also have a more realistic idea of the capabilities of their students 

than teachers who do not regularly use student data to inform their decisions (Fuchs et 

al., 1984; Fuchs et al., 1991; Mathes et al., 1998). 

However, before teachers can identify students at risk of mathematics failure and 

differentiate instruction, they must first have information about the specific needs of 

their students. To effectively link assessment with instruction, math assessments must 

accomplish the following:  

• identify students at risk of having difficulty in math (i.e., students who may 

need extra instruction or intensive intervention if they are to progress toward 

grade-level standards in math by year’s end);  

• monitor student progress for growth on a frequent, ongoing basis and identify 

students falling behind;  

• provide information about students that will be helpful in planning 

instruction to meet their needs; and  

• assess whether students meet grade-level mathematics standards by year’s 

end. 

In any model of instruction, for assessment data to affect instruction and student 

outcomes, it must be relevant, reliable, and valid. 

• To be relevant, data must be available on a timely basis and target important 

skills that are influenced by instruction. 

• To be reliable, there must be a reasonable degree of confidence in student 

scores. 
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• To be valid, the skills assessed must provide information that is related to 

future mathematical ability. 

There are many reasons why a student score from a single point in time under 

one set of conditions may be inaccurate: confusion, shyness, illness, mood or 

temperament, communication or language barriers between student and examiner, 

scoring errors, or inconsistencies in examiner scoring. However, gathering assessments 

across multiple time points means student performance is more likely to reflect actual 

ability. Using the computer also reduces inaccuracies related to human administration 

errors. 

Collecting sufficient, reliable assessment data on a continuous basis can be an 

overwhelming and daunting task for schools and teachers. Screening and inventory 

tools use a benchmark or screen schema in which assessments are administered three 

times a year. More frequent continuous progress monitoring is recommended for all 

low-performing students, but administration is at the discretion of already 

overburdened schools and teachers.  

Some schools use more labor-intensive methods, such as one-on-one 

administration of progress monitoring. These assessments require a significant amount 

of work to administer individually to each student. The examiners who implement these 

assessments must also receive extensive training in both the administration and scoring 

procedures to uphold the reliability of the assessments and avoid scoring errors. 

Because these assessments are so labor intensive, they were expensive for school 

districts to administer and difficult for teachers to use for ongoing progress monitoring 

and validation of test results. Moreover, there is typically a delay between when an 

assessment is given to a student and when the teacher receives and is able to review the 

results of the assessment, making manual assessments less than ideal for planning 

instruction. 

Continuous Progress Monitoring 

ISIP Math grew out of the model of continuous progress monitoring (CPM) called 

Curriculum-Based Measurement (CBM), which is an assessment methodology for 

obtaining measures of student achievement over time. This is done by repeatedly 

sampling proficiency in the school’s curriculum at a student’s instructional level using 

parallel forms at each testing session (Deno, 1985; Fuchs and Deno, 1991; Fuchs et al., 

1983). Parallel forms are designed to globally sample academic goals and standards that 
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reflect end-of-grade expectations. Students are then measured in terms of movement 

toward those end-of-grade expectations. A major drawback to this type of assessment is 

that creating truly parallel forms of any assessment is virtually impossible; thus, student 

scores from session to session will reflect some inaccuracy as an artifact of the test itself. 

Computer Application 

The challenge with most CPM systems is that they have been cumbersome for 

teachers to implement and use (Stecker and Whinnery, 1991). Teachers have to 

administer tests to each student individually and then graph the data by hand. The 

introduction of handheld technology has allowed for organizing and displaying student 

results more easily, but information in this format is often not available on a timely 

basis. Even so, many teachers find administering such assessments onerous. The result 

has been that CPM has not been as widely embraced as originally hoped by teachers and 

administrators in general education. 

Computerized CPM applications, however, are a logical step toward increasing 

the likelihood that continuous progress monitoring occurs more frequently with 

monthly or even weekly assessments. Computerized CPM applications using parallel 

forms have been developed and used successfully in upper grades for reading, 

mathematics, and spelling (Fuchs et al., 1995). Computerized applications save time 

and money. They eliminate burdensome test administrations and scoring errors by 

calculating, compiling, and reporting scores. They provide immediate access to student 

results that can be used to affect instruction. They provide information organized in 

formats that automatically group students according to risk and recommended 

instructional levels. Student results are instantly plotted on progress charts with trend 

lines projecting year-end outcomes based on growth patterns, eliminating the need for 

the teacher to manually create monitoring booklets or analyze results. 

Computer-Adaptive Testing 

With recent advances in computer-adaptive testing (CAT) and computer 

technology, it is now possible to create CPM assessments that adjust to the actual ability 

of each student. Thus, CAT replaces the need to create parallel forms. Assessments built 

on CAT are sometimes referred to as “tailored tests” because the computer selects items 

for students based on their individual performance, thus tailoring the assessment to 

match the performance abilities of each student. 
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There are many advantages to using a CAT model rather than the traditional 

parallel forms model, as is used in many math instruments. For instance, it is virtually 

impossible to create alternate forms of any truly parallel assessment. The reliability 

from form to form will always be somewhat compromised. However, when using a CAT 

model, it is not necessary that each assessment be of identical difficulty to previous and 

future assessments. 

In CAT models, each item within the testing battery is assessed to determine how 

well it discriminates ability among students and how difficult it actually is through a 

process called Item Response Theory (IRT). Once these parameters have been 

determined for each item, the CAT algorithm can be programmed. Using this 

sophisticated computerized algorithm, the computer adaptively selects items based on 

each student’s performance during the assessment. Test questions range from easy to 

hard for each covered strand. To identify the student’s overall ability and individual skill 

level, the difficulty of the test questions presented changes with every response. 

If a student answers questions correctly on the ISIP assessment, the program will 

present questions that are more challenging until the student shows mastery or 

responds with an incorrect answer. When a student answers a question incorrectly, ISIP 

will present less difficult questions until the student begins answering correctly again. 

Through this process of selecting items based on student performance, the computer is 

able to generate “probes” that have higher reliability than those typically associated with 

alternate formats and that better reflect each student’s true ability. The ability score 

shows how a student is performing compared to their previous performance and to 

other students at the same grade level. 
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Figure 1.1. Process used in a Computer Adaptive Test 

ISIP Math is delivered at established intervals (usually monthly) to the 

appropriate grade level for each student throughout a nine-month school year. This 

provides the opportunity for teachers to identify where students fall within grade-level 

expectations and assists teachers in preparing for state standardized assessments, which 

are typically delivered only at grade-level standards. 

ISIP Math Domains 

Designed for students in prekindergarten through 8th grade, ISIP Math provides 

teachers and other school personnel with easy-to-interpret, web-based reports that 

detail student strengths and deficits and provide links to additional intervention 

resources. Using this data allows teachers to make informed decisions regarding each 

student’s response to targeted math instruction and intervention strategies. Reports 

from the ISIP assessment provide teachers with the information they need to know, 

including:  

• if students have deficits in math skills that could place them at risk for failure;  

• if instruction is having the desired effect of raising students’ math knowledge; 

and 

• if students are making progress in comprehending increasingly challenging 

material. 

This method continues until the student’s weaknesses are identified. First, the 

student is presented with an item. Then, either the student answers correctly and is 

given a more difficult item, or the student answers incorrectly and is given a less difficult 

item. 

ISIP Math measures proficiency in the six primary domains of mathematical 

reasoning and processes — number sense, operations, algebra, geometry, measurement, 

and data analysis — as defined by the National Council of Teachers of Mathematics 

(NCTM), and it also measures personal financial literacy (PFL) as determined by the 

Texas Essential Knowledge and Skills (TEKS). 
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Number Sense 

The fundamental basis of all mathematics is understanding numbers and having 

awareness of the relationships among numbers. Students must be taught to recognize 

how numbers are represented as well as number systems and counting sequences. 

Instruction in this essential area is the most fundamental content standard. 

Operations 

Comprehension of mathematical operations, concepts, and relations is critical to 

developing an understanding of number value and sequence. For example, what does it 

mean to add, subtract, multiply, or divide? How do these functions impact value? The 

ability to estimate and perform mental calculations as well as calculate answers on 

paper are both crucial components to achieving success in math. 

Algebra 

Students must be able to comprehend statements of relations, mathematical 

symbols, and rules for ordering and executing computations before using them to solve 

mathematics problems or questions. The skills related to algebra that all students must 

learn include, but are not limited to:  

• recognizing and comprehending numerical patterns, relationships, and 

functions;  

• applying mathematical constructs to explain quantitative relationships;  

• illustrating computational examples using algebraic symbols; and  

• evaluating variance in mathematical situations. 

Geometry 

The ultimate goal of geometry is to arm students with foundational skills to 

accomplish everyday tasks such as describing shapes and angles, recognizing patterns 

and measurements, and even reading a map. The geometry concepts that must be taught 

to encourage student achievement in geometry include, but are not limited to:  

• calculating area and perimeter of two-dimensional geometric shapes;  

• analyzing volume, surface area, and other properties of three-dimensional 

geometric shapes;  
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• constructing equations and statements to describe geometric relationships;  

• characterizing spatial relationships and using coordinates to identify location; 

and 

• applying spatial reasoning, geometric modeling, and concepts of symmetry to 

mathematical contexts. 

Measurement 

Measurement skills are unique in that students often inherently recognize their 

practical significance. Comprehension of measurement also provides many 

opportunities to practice and apply many other math skills, especially geometry and 

operations. Students must learn about different systems of measurement (metric vs. 

customary), formulae for calculating measurements (length/height, area/perimeter, 

weight/capacity/volume), application of appropriate tools (ruler vs. protractor), and 

dimensions of time and money. 

Data Analysis 

Beyond number recognition and operational aptitude, students must be able to 

form and evaluate numerical inferences and then formulate accurate mathematical 

conclusions. The analytical math concepts that all students should learn include, but are 

not limited to:  

• reading, creating, and interpreting graphs and charts;  

• devising and answering formulaic expressions using collected and organized 

data;  

• analyzing data by recognizing appropriate statistical modes; and  

• comprehending and executing basic probability concepts. 

Teacher Friendly 

ISIP Math assessments are teacher friendly. Each assessment is computer based, 

requires little administrative effort, and requires no teacher/examiner testing or manual 

scoring. Teachers simply monitor student performance during assessment periods to 

ensure reliability and accuracy of results. In particular, teachers are alerted to observe 

any students identified by ISIP Math who may be experiencing difficulties as they 



 

17 
 

complete the assessment. Teachers subsequently review student results to validate 

outcomes. For students whose skills may be a concern, based on performance level, 

teachers may easily validate student results by re-administering the entire ISIP Math 

assessment as an On-Demand assessment. 

Student Friendly 

ISIP Math is also student friendly. Each assessment session in ISIP Math for 

prekindergarten through first grade gives students the experience of shopping in a 

grocery store called Mario’s Market. At the beginning of the session, Mario appears 

onscreen and welcomes the student briefly before the assessment begins. Assessment 

delivery is presented in a developmentally appropriate format with respect to students’ 

reading skills, fine/gross motor skills, and hand-eye coordination. Consideration of 

young students’ fine motor skills informs navigation design and assessment interfaces 

that allow as much hands-on/manipulative-based interaction as possible. The singular 

interface theme of Mario’s Market minimizes student distractions and unnecessary 

cognitive load. 

Similarly, each assessment session in ISIP Math for grades 2 through 8 begins 

with an introduction from a familiar Istation Math character, the Chief. The Chief briefly 

explains that the student’s mathematical knowledge demonstrated on the assessment 

will help them become a secret agent. He informs the student that once the assessment 

is complete, they will participate in math missions with Donnie, Stix, and Angel to 

defeat villains and save the world. This ties together ISIP Math and the instruction in 

Istation Math. Additionally, it provides motivation for students to do their best when 

completing the assessment. 

ISIP Math and Instructional Planning 

ISIP Math provides continuous assessment results that can be used in recursive 

assessment instructional decision loops. After students complete the assessment, the 

results will help teachers identify students in need of support. If the results are in 

question based on a student’s previous achievement, validation of student results and 

recommended instructional levels can easily be verified by re-administering 

assessments. If a student’s results seem inconsistent with other ISIP Math data points, 

the teacher can use the On-Demand feature of the Istation website at www.istation.com. 
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By assigning additional assessments to individual students, teachers can compare and 

evaluate results. When the On-Demand feature is used, the assessment will be 

automatically administered the next time a student logs in. 

The delivery of student results facilitates the evaluation of curriculum and 

instructional plans. The technology behind ISIP Math delivers real-time evaluation of 

results, and reports on student progress are immediately available upon assessment 

completion. Assessment reports automatically group students by level of support 

needed. Data is provided in both graphic and detailed numerical format for every test 

administration and for every level of a district’s reporting hierarchy. Reports provide 

summary information for the current and prior assessment periods that can be used to 

evaluate curriculum, plan instruction and support, and manage resources. 

At each assessment period, ISIP Math automatically alerts teachers to students in 

need of instructional support via the Priority Report. Students are grouped according to 

instructional level. Links to relevant teacher-directed lessons and other instructional 

materials are provided for each instructional level. When student performance on 

assessments is below the goal for several consecutive assessments, teachers are further 

notified in order to raise teacher concern and signal the need to consider additional or 

different forms of instruction. 

A complete history of Priority Report notifications, including the current year and 

all prior years, is maintained for each student. On the report, teachers may acknowledge 

that suggested interventions have been provided. A record of these interventions is 

maintained with the student history as an intervention audit trail. This history can be 

used for special education Individualized Education Plans (IEPs), in Response to 

Intervention (RTI), and in other models of instruction to modify a student’s 

instructional plan. 

In addition to the recommended activities, instructional coaches, intervention 

specialists, and teachers have access to an entire library of teacher-directed lessons and 

support materials at www.istation.com. Districts and schools may also elect to enroll 

students in Istation’s computer-based math intervention program, Istation Math. This 

program provides individualized instruction based on a student’s results from ISIP 

Math. Student results from Istation Math are combined with ISIP Math results to 

provide a more accurate profile of a student’s strengths and weaknesses that can help 

inform and enhance teacher planning. 

All student information is automatically available, sorted by demographic 

classification and by designated subgroups of students who may need to be monitored. 



 

19 
 

As students progress in the program, a year-to-year history of ISIP Math results is 

available. Administrators, principals, and teachers may use these reports to evaluate and 

modify curriculum and intervention strategies and evaluate personnel performance and 

the effectiveness of professional development. 

Goals of the ISIP Math Update 

Istation had several goals for this update of ISIP Math. For one, ISIP Math gave 

an overall score, but there was a need to see how students were doing in the different 

math domains. Chapter 4 goes into depth regarding how the ISIP Math domains were 

constructed and the care and attention that was paid into the creation of the domains. 

Further, the previous edition of ISIP Math had a separate scale for each grade, 

and the items were discrete across the different grades, whereas many school districts 

requested a longitudinal scale. Using vertical scaling constants, we now have a scale that 

is continuous from prekindergarten through eighth grade. These changes are described 

in chapter 5. 

Finally, the student population has changed since ISIP Math was first released. 

Updated, more rigorous norms were needed to help schools identify students who were 

struggling in math. We updated the norms using the vertical scale, and using data from 

the extensive Istation database, we constructed a sample that uses post stratification 

methods to make the sample representative of the student population in the US. These 

changes are described in chapter 6. 
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ISIP Math Items 

The unique item banks for ISIP Math assessments are designed to provide an 

accurate computer-adaptive universal screening and progress-monitoring assessment 

system that can support and inform teachers’ instructional decisions. By administering 

the grade-appropriate assessments, teachers and administrators can then use the results 

to answer two questions:  

1. Are students in the designated grade at risk of failing math? 

2. What degree of instructional support will students require to be successful at 

math? 

• Because the assessments are designed to be administered at regular 

intervals, these decisions can be applied throughout the course of the 

school year (Hill et al., 2012).  

• ISIP Math assesses both proficiency in mathematical concepts and 

students’ level of cognitive engagement. 

The strands of proficiency for cognitive engagement include Strategic 

Competence, Adaptive Reasoning, Procedural Fluency, and Conceptual Understanding. 

The mathematical domains that are covered include: 

1. number sense 

2. operations 

3. algebra 

4. geometry 

5. measurement 

6. data analysis 

7. probability and statistics 

8. Ratios and Proportional Relationships 

Chapter 2: Item Writing and Item 
Properties 



 

21 
 

The mathematical content (by domain) of the assessment is based on the 

following standards:  

• the Curriculum Focal Points (developed by National Council of Teachers of 

Mathematics [NCTM] in 2006),  

• the mathematics content standards published by the Common Core State 

Standards Initiative, and  

• state standards from California, Florida, New York, Texas, and Virginia. 

The cognitive engagement dimension refers to the level of cognitive processing at 

which students are expected to engage with an assessment item. Levels of cognitive 

processing consists of five interdependent strands that promote mathematical 

proficiency: 

1. conceptual understanding 

2. procedural fluency 

3. strategic competence 

4. adaptive reasoning 

5. productive disposition 

The formative assessment item bank assesses student understanding of the 

content at varying levels of cognitive engagement. The item bank incorporates four of 

the five strands. Productive disposition is not assessed (Hill et al., 2012). 

Item Writing Procedures 

All items were written under the supervision of Leanne Ketterlin-Geller, PhD, 

professor at Southern Methodist University. This technical report provides a brief 

description of the item writing process. To access the technical reports for the Universal 

Screener Instrument Development for each grade level (prekindergarten through 8), 

refer to the external links provided at the end of this report (Hatfield et al., 2015). 

All item writers had expertise and experience teaching mathematics at the grade 

level for which they were selected to write. Before beginning the process, item writers 

attended training and received a style guide. The guide provided explanations, 

examples, and stylistic expectations of items to support writing high-quality 

mathematics items. It also included information on the cognitive levels of engagement. 

The training covered an overview of the assessment, a review of elements of high-quality 
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test design relating to fairness, reliability, and validity in testing, and information on the 

test blueprint. Each item writer was paired with a staff reviewer (Hatfield et al., 2015). 

After the items passed the first review, experts reviewed the items for accuracy, 

precision, and appropriateness of the distractors and then rated each item as Extremely 

Accurate, Appropriate or Mostly Accurate, Somewhat Accurate/Appropriate, or Not at 

all Accurate/Appropriate. These expert reviewers made recommendations for revisions, 

including changes to distractors, and the corrections were then made to the items 

(Hatfield et al., 2015). 

Next, mathematics teachers reviewed the items’ appropriateness of language, 

mathematical vocabulary, content or concepts, distractors, and art and design. The 

teachers also analyzed the items for bias in language or content. Specifically, they were 

asked if the item required background knowledge unrelated to the concept that would 

differ for students with different backgrounds who might be unfamiliar with the terms 

or concepts in the items. The reviewers then rated each item as biased, somewhat 

biased, or not biased. In instances where they rated the items as biased, they were asked 

to provide recommendations to improve the item (Hatfield et al., 2015). 

ISIP Math DIF Analysis for Prekindergarten 
through Grade 8 

To update the bias information in this revision, we conducted a study to 

determine differential item functioning, or DIF, of the most commonly used items at the 

middle-of-the-year assessment. 

DIF can be described as the difference in an item’s difficulty between subgroups 

of examinees who have the same ability level on the trait being measured 

(Patarapichayatham et al., 2012). DIF occurs when an item in a test functions differently 

for different groups, given the same ability level. DIF is an important psychometric 

property to display fairness for achievement tests. There are many ways to detect DIF in 

a test. The logistic regression DIF detection method is applied in this study to detect 

uniform DIF. Swaminathan and Rogers proposed logistic regression in 1990 as an 

alternative to the Mantel-Haenszel test to detect DIF. Logistic regression is a generalized 

linear model to calculate the probability of giving a correct answer to a dichotomous 

item given a score and group membership. 
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The original data file had over 3,000 items in prekindergarten through grade 8. 

Two DIF factors were investigated: gender (male/female) and race/ethnicity (Non-

Hispanic White/all other combined). The data were extracted from the January 

assessment month of the 2018-2019 school year for prekindergarten through grade 8 

students who completed the ISIP Math assessment. 

Because DIF analyses require complete data on the DIF factors and demographic 

variables are not a requirement in the Istation system, students who did not have gender 

and race/ethnicity in the database were excluded. Items that had less than 100 

responses were also discarded. The final data file consisted of 1,682 items from 185,048 

students. There were 7,856 prekindergarteners, 31,920 kindergarteners, 34,628 first 

graders, 34,972 second graders, 24,365 third graders, 22,794 fourth graders, 21,204 

fifth graders, 3,717 sixth graders, 2,044 seventh graders, and 1,548 eighth graders. 

The logistic regression DIF detection analyses by difR package were used. ISIP 

Math scale scores were used as matching criteria. The analysis was conducted separately 

for each grade and each DIF factor, totaling 20 analyses conducted in this study. 

The difR obtained two DIF detection criterions: Zumbo & Thomas (ZT) and 

Jodoign & Gierl (JG). Both criterions had the same procedure but different cut points. 

There are three DIF effect sizes: A – negligible or non-significant DIF effect, B – slightly 

to moderate DIF effect, and C – moderate to large DIF effect. The DIF effect size under 

Zumbo & Thomas (ZT) is as follows: 0 < A ≤ 0.13, 0.13 < B ≤ 0.26, and 0.26 < C ≤ 

1Jodoign & Gierl (JG) is much smaller: 0 < A ≤ 0.035, 0.035 < B ≤ 0.07, and 0.07 < C ≤ 1. 

Results show that all items displayed as A item (negligible or non-significant DIF 

effect) with ZT DIF criterion. Under JG DIF criterion (see Table 1), results show that 

approximately 98% displayed as A item (negligible or non-significant DIF effect); 1% 

displayed as B item (slightly to moderate DIF effect); and less than 1% displayed as C 

item (moderate to large DIF effect) for both DIF factors. To be more specific, 15 items 

displayed as B item and three items displayed as C item with gender DIF factor. 

Seventeen (17) items displayed as B item and three items displayed as C item with 

race/ethnicity DIF factor.  
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Grade A item Frequency B item Frequency  C item Frequency  
Pre-K 136  99.27% 1 0.73% 0  
K 220  100.00% 0  0  
1 209  98.12%  4 1.88% 0  
2 264  100.00% 0  0  
3 208  99.04% 1 0.48% 1 0.48% 
4 192  98.96% 1 0.52% 1 0.52% 
5 172  98.85% 2 1.15% 0  
6 146  98.64% 1 0.68% 1 0.68% 
7 149  96.75% 5 3.25% 0  
8 145  100.00% 0  0  

 

Grade A item Frequency B item Frequency  C item Frequency  
Pre-K 137  100.00% 0   0  
K 217  98.64% 3  1.36% 0  
1 212  99.53% 1  0.47% 0  
2 264  100.00% 0   0  
3 208  99.04% 1  0.48% 1 0.48% 
4 192  98.96% 1  0.52% 1 0.52% 
5 174  100.00% 0   0  
6 142  100.00% 6  4.05% 0  
7 150  97.40% 3  1.95% 1 0.65% 
8 143  98.62% 2  1.38% 0  

 

  

Table 2.1. Differential Item Functioning (DIF factors) for Gender 

Table 2.2. Differential item functioning (DIF Factors) for Race/Ethnicity 
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The first step in any construction of a computer-adaptive test (CAT) is to collect 

information about the items’ discrimination and difficulty. The goals of this study were 

to determine the appropriate item response theory (IRT) model, estimate item-level 

parameters, and tailor the CAT algorithms, such as the exit criteria. 

The IRT Model 

A two-parameter logistic IRT (Item Response Theory) model (2PL IRT) was 

posited. We defined the binary response data, xij, with index i = 1, … n for persons, and 

index j = 1, … j for items. The binary variable xij = 1 was used if the response from 

student i to item j was correct, and the binary variable xij = 0 was used if the response 

was wrong. In the 2PL IRT model, the probability of a correct response from examinee i 

to item j was defined as: 

 

The variable θi is examinee i’s ability parameter, bj is item j’s difficulty parameter, 

and aj is item j’s discrimination parameter. 

While the marginal maximum likelihood estimation (MMLE) approach by Bock 

and Aitkin (1981) has many desirable features compared to earlier estimation 

procedures, such as consistent estimates and manageable computation, there are some 

limitations. For example, items must be eliminated if they are answered correctly by all 

examinees or if they are answered incorrectly by all. Also, item discrimination estimates 

near zero can result in very large absolute values of item difficulty estimates, which may 

fail the estimation process and no ability estimates can be obtained. To overcome these 

limitations, we employed a full Bayesian framework to fit the IRT models. More 

specifically, the likelihood function based on the sample data is combined with the prior 

Chapter 3: IRT Calibration and the 
CAT Algorithm 
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distributions assumed on the set of the unknown parameters to produce the posterior 

distribution of the parameters; the inference is then based on the posterior distribution. 

There are two roles played by the prior distribution. First, if we have information 

from experts or previous studies on the IRT parameters, such as a certain group of items 

being more challenging, we can utilize the data from the prior studies to help produce 

more stable estimates. On the other hand, if we know little about those parameters, we 

could use the non-informative prior data alongside a large variance to reflect this 

uncertainty. Second, in the Bayesian estimation, the primary effect of the prior 

distribution is to shrink the estimates toward the mean of the prior. The shrinkage 

towards the prior mean helps prevent deviant parameter estimates. Furthermore, with 

the Bayesian approach, there is no need to eliminate any data. 

As for the prior specification, we assumed that the j item difficulty parameters are 

independent, as are the j item discrimination parameters and the n examinee ability 

parameters. We initially assigned the subject ability parameters and item difficulty 

parameters non-informative, two-stage, normal priors:  

θi ~ N(0,τθ ,)   i =1, … n 

δj ~ N(0,τδ ,)   j =1, … j 

Variance parameters τθ and τδ each follow a conjugate inverse gamma prior to 

introduce more flexibility (where a and b are fixed values):  

τθ ~IG(aθ , bθ ) 

τθ ~IG(aδ , bδ ) 

The hyperparameters were assigned to produce vague priors. From Berger 

(1985), Bayesian estimators are often robust to changes of hyperparameters when non-

informative or vague priors are used. We let aθ = aλ = 2 and bθ = bδ = 1, allowing the 

inverse gamma priors to have infinite variances. 

By definition, the item discrimination parameters are necessarily positive, so we 

assumed a gamma prior:  

λ ~ Gamma(aλ, bλ), j = 1, … j. 

The hyper-parameters were defined as aλ = bλ = 1. 

The Gibbs sampler, a Bayesian parameter estimation technique, was employed to 

obtain item parameter estimates by way of a BILOG program. The resulting analysis 

produced two parameter estimates for each item: an item difficulty parameter and an 
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item discrimination parameter (which indicates how well an item discriminates between 

students with low math ability and students with high math ability). 

Grades Prekindergarten–1 

A huge sample size was used in this study. For prekindergarten, the number of 

responses per item ranged from 684 to 2,535; for kindergarten, 573 to 1,888; and for 

1st grade, 737 to 2,717. 

During the 2014-2015 school year, data were collected from schools across the 

country so that ISIP™ Math for students in prekindergarten through grade 1 would be 

available for schools in the 2015-2016 school year. All students in prekindergarten 

through first grade were invited to participate, including students with disabilities and 

English learners (EL). There were no specific demographic requirements for participants. 

Tests were administered by computer to groups in a classroom or computer lab 

setting. There were 397 items for prekindergarten, 401 items for kindergarten, and 395 

items for first grade. The items were divided into nine test forms per grade with linking 

items between forms. Each test form lasted 20-25 minutes for prekindergarten students 

and 30-45 minutes for kindergarteners and first grade students. Each grade level had its 

own item pool with no linking items between those pools: prekindergarten test forms 

were only taken by students in prekindergarten, kindergarten test forms were only taken 

by kindergarteners, and first grade test forms were only taken by first grade students. 

Approximately 5,000 students per grade level participated in this study. The majority of 

students did not provide demographic information, but 1,006 prekindergartners, 556 

kindergarteners, and 705 first graders did provide such information.  Gender is reported 

as male or female, and ethnicity is reported as African American, American Indian, Asian, 

Hispanic/Latino, White, or Unknown. Special education status (SPED) is divided into 

whether or not the student was receiving services. Students on free or reduced priced 

lunch (FRPL), and whether or not the student was receiving services for English as a 

second language (ESL). The information from these students is reported in Table 3-1. 
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Demographics  Prekindergarten Kindergarten Grade 1 
Gender: Male 500  

(49.7%) 
299  

(53.8%) 
372  

(52.8%) 
Gender: Female 506  

(50.3%) 
257  

(46.2%) 
333  

(47.2%) 
Ethnicity: African American 778  

(77.3%) 
107  

(19.2%) 
133  

(18.9%) 
Ethnicity: American Indian 3  

(.3%) 
4  

(.7%) 
5  

(.7%) 
Ethnicity: Asian 2  

(.2%) 
8 (1.4%) 4  

(0.6%) 
Ethnicity: Hispanic/Latino 12  

(1.2%) 
102  

(18.3%) 
7  

(1.0%) 
Ethnicity: White 172  

(17.1%) 
298  

(53.6%) 
277  

(39.3%) 
Ethnicity: Unknown 39  

(3.9%) 
37  

(6.7%) 
279  

(39.6%) 
SPED: Yes 41  

(4.1%) 
8  

(1.4%) 
10  

(1.4%) 
SPED: No 1  

(.1%) 
79  

(14.2%) 
175  

(24.8%) 
FRPL: Yes 10  

(1.0%) 
74  

(13.3%) 
106  

(15.0%) 
FRPL: No 1  

(.1%) 
79  

(14.2%) 
175  

(24.8%) 
ESL: Yes 10  

(1.0%) 
1 

(.2%) 
6  

(.9%) 
ESL: No 1  

(.1%) 
152  

(27.3%) 
274  

(38.9%) 

Regarding the content of the items, multiple sub-contents are measured for each 

grade. The item pools by grade are available in Table 3.2. 

  

Table 3.1. Demographics of Students in IRT study Grades Pre-K to 1 
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Prekindergarten  
 

▪ Counting Skills ▪ Spatial Relations 
▪ Number Sense ▪ Measurement 
▪ Number and Operations ▪ Measurement Skills 
▪ Counting and Cardinality ▪ Data Analysis 
▪ Adding to/Taking Away Skills ▪ Mathematical Reasoning 
▪ Geometry ▪ Data collection and statistics 
▪ Algebra and Functions ▪ Patterns and Seriation 
▪ Algebra ▪ Patterns and Relationships 

 
Kindergarten  

 

▪ Counting and Cardinality ▪ Measurement 
▪ Number and Operations ▪ Probability and Statistics 
▪ Number and Number Sense ▪ Data Analysis 
▪ Operations and Algebraic Thinking ▪ Measurement and Data 
▪ Number Operations in Base Ten ▪ Personal Financial Literacy  
▪ Geometry ▪ Algebra  
▪ Geometry and Measurement 

 

 

First Grade 
 

▪ Number Sense ▪ Number and Operations in Base Ten 
▪ Operations and Algebraic Thinking ▪ Algebraic Reasoning 
▪ Measurement and Data ▪ Measurement and Data Analysis 
▪ Patterns ▪ Measurement 
▪ Functions ▪ Data Analysis 
▪ Number and Operations 

 
▪ Personal Financial Literacy 

Overall, most items were good quality in terms of item discriminations and item 

difficulties. For prekindergarten, 5 items were removed and 392 calibrated item 

parameters remain in the item pool. For kindergarten, 23 items were removed and 377 

calibrated item parameters remain in the item pool. For first grade, 35 items were 

removed and 360 calibrated item parameters remain in the item pool. 

Grades 2-8 

During the 2012-2013 school year, data were collected from schools in Texas 

during the spring semester so that ISIP™ Math (grades 2-8) would be available for 

Table 3.2. Item Pools by Grade 
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schools in the 2013-2014 school year. All students in second through eighth grade were 

invited to participate, including students with disabilities and English learners. 

Tests were administered by computer to groups in a classroom or computer lab 

setting. There were 940 items for grade 2; 1,066 items for grade 3; 875 items for grade 

4; 882 items for grade 5; 1,159 items for grade 6; 938 items for grade 7; and 616 items 

for grade 8. The items were divided into 20 test forms per grade with linking items 

between forms. Each test form lasted 40-55 minutes. Each grade level had its own item 

pool with no linking items between those pools, meaning second grade test forms were 

only taken by second grade students, third grade test forms were only taken by third 

grade students, and so on. 

Approximately 6,000 students per grade level participated in this study. Students 

had the choice to provide demographic information or not. We received data from 3,937 

second graders; 5,127 third graders; 5,832 fourth graders; 5,067 fifth graders; 6,347 

sixth graders; 1,537 seventh graders; and 1,169 eighth graders. The information from 

these students is reported in Table 3.3. 
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Demographics  Grade 
2 

Grade 
3 

Grade 
4 

Grade 
5 

Grade 
6 

Grade 
7 

Grade 
8 

Gender: Male 1548 
(39.3%) 

1726 
(33.7%) 

2094 
(35.9%) 

1704 
(33.6%) 

2700 
(42.5%) 

761 
(49.5%) 

585 
(50.0%) 

Gender: Female 1336 
(33.9%) 

1679 
(32.7%) 

2049 
(35.1%) 

1577 
(31.1%) 

2617 
(41.2%) 

760 
(49.4%) 

572 
(48.9%) 

Ethnicity: 
African American 

813 
(20.7%) 

467 
(9.1%) 

989 
(17.0%) 

612 
(12.1%) 

1292 
(20.4%) 

197 
(12.8%) 

203 
(17.4%) 

Ethnicity: 
American Indian 

32 
(0.8%) 

23 
(0.5%) 

13 
(0.2%) 

20 
(0.4%) 

61 
(1.0%) 

8  
(0.5%) 

5  
(0.4%) 

Ethnicity: Asian 64 
(1.6%) 

53 
(1.0%) 

184 
(3.2%) 

200 
(3.9%) 

140 
(2.2%) 

13 
(0.8%) 

18 
(1.5%) 

Ethnicity: 
Hispanic/Latino 

743 
(18.9%) 

117 
(2.3%) 

120 
(2.1%) 

131 
(2.6%) 

215 
(3.4%) 

111 
(7.2%) 

88 
(7.6%) 

Ethnicity: White 1137 
(28.6%) 

1484 
(28.9%) 

1750 
(30.0%) 

1710 
(33.7%) 

1830 
(28.8%) 

755 
(49.1%) 

664 
(56.8%) 

Ethnicity: 
Unknown 

1148 
(29.2%) 

2978 
(58.1%) 

705 
(12.1%) 

2394 
(47.2%) 

2809 
(44.3%) 

453 
(29.5%) 

191 
(16.3%) 

SPED: Yes 246 
(6.2%) 

212 
(4.1%) 

289 
(5.0%) 

236 
(4.7%) 

643 
(10.0%) 

112 
(7.3%) 

109 
(9.3%) 

SPED: No 2401 
(61.0%) 

2474 
(48.3%) 

1754 
(30.1%) 

1660 
(32.8%) 

3767 
(59.4%) 

972 
(63.2%) 

869 
(74.3%) 

FRPL: Yes 1516 
(38.5%) 

2013 
(39.3%) 

74 
(13.3%) 

2504 
(49.4%) 

2641 
(41.6%) 

911 
(59.3%) 

808 
(69.1%) 

FRPL: No 540 
(13.7%) 

628 
(12.2%) 

79 
(14.2%) 

2563 
(51.6%) 

1242 
(19.6%0 

6  
(0.4%) 

1  
(0.1%) 

ESL: Yes 331 
(8.4%) 

1 
 (0.2%) 

1  
(0.2%) 

26 
(0.5%) 

576 
(9.1%) 

23 
(1.5%) 

58 
(4.9%) 

ESL: No 2160 
(54.9%) 

152 
(27.3%) 

152 
(27.3%) 

2497 
(49.3%) 

2358 
(37.2%) 

1020 
(66.4%) 

920 
(78.7%) 

Has a Disability: 
Yes 

183 
(4.6%) 

251 
(4.9%) 

305 
(5.2%) 

283 
(5.6%) 

95 
(1.5%) 

270 
(17.6%) 

252 
(21.6%) 

Has a Disability: 
No 

3754 
(95.4%) 

4876 
(95.1%) 

5527 
(94.8%) 

4784 
(94.4%) 

6252 
(98.5%) 

1267 
(82.4%) 

917 
(78.4%) 

As with the pre-K to grade 2 IRT, multiple sub contents were measured for each 

grade. The item pools by grade are available in Table 3.4. 

  

Table 3.3. Demographics of Students in IRT study Grades 2 to 8 
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Grades 2–5  

▪ Number and Operations, Base 10 
▪ Number and Operations, Algebra 
▪ Number and Operations, Fractions 
▪ Measurement and Data 
▪ Probability and Statistics 
▪ Personal Financial Literacy 

Geometry 

Grades 6–7  

▪ Expressions, Equations and Relationships 
▪ Operations and Algebraic Thinking 
▪ Ratios and Proportional Relationships 
▪ Probability and Statistics 
▪ Personal Financial Literacy 
▪ Geometry 

 
Grade 8  

▪ Expressions, Equations and Relationships 
▪ Functions 
▪ Proportional Relationships 
▪ Number and Operations 
▪ Probability and Statistics 
▪ Personal Financial Literacy 
▪ Geometry  

 

Overall, most items were good quality in terms of item discriminations and item 

difficulties. For second grade, 44 items were removed and 896 calibrated item 

parameters remain in the grade 2 item pool. Under third grade, 53 items were removed 

and 913 calibrated item parameters remain in the grade 3 item pool. For fourth grade, 

65 items were removed and 810 calibrated item parameters remain in the item pool. For 

fifth grade, 71 items were removed and 811 calibrated item parameters remain in the 

item pool. For sixth grade, 82 items were removed and 977 calibrated item parameters 

remain in the item pool. For seventh grade, 96 items were removed and 742 calibrated 

item parameters remain in the item pool. For eighth grade, 73 items were removed and 

543 calibrated item parameters remain in the item pool. 

Table 3.4. Sub Contents Measured for Each Grade in the ISIP Math IRT Study 
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CAT Algorithm 

The Computerized Adaptive Test (CAT) algorithm is an iterative approach to test 

taking. Instead of giving a large, general pool of items to all test takers, a CAT algorithm 

repeatedly selects the optimal next item for the individual test taker, bracketing their 

ability estimate until some stopping criteria is met. 

The algorithm is as follows:  

1. Assign an initial ability estimate to the test taker. 

2. Ask the question that gives the most information based on the current ability 

estimate. 

3. Re-estimate the ability level of the test taker based on their answer to the 

prior question. 

4. Continue until the stopping criteria is met. 

This iterative approach is made possible by using IRT models. IRT models 

generally estimate a single, latent trait (ability) of the test taker, and this trait is 

assumed to account for all response behavior. These models provide response 

probabilities based on test taker ability and item parameters. Using these item response 

probabilities, we can compute the amount of information each item will yield for a given 

ability level. In this way, we can select the next item in a way that maximizes 

information gain based on student ability rather than percent correct or grade-level 

expectations. 

Though the CAT algorithm is simple, it allows for endless variations on item 

selection criteria, stopping criteria, and ability estimation methods. All of these 

elements play into the predictive accuracy of a given implementation, and the best 

combination is dependent on the specific characteristics of the test and the test takers. 

In developing Istation’s CAT implementation, we explored many approaches. To 

assess the various approaches, we ran CAT simulations using each approach on a large 

set of real student responses to our items (1,000 students, 700 item responses each). To 

compute the “true” ability of each student, we used Bayes expected a posteriori (EAP) 

estimation on all 700 item responses for each student. We then compared the results of 

our CAT simulations against these “true” scores and other criteria to determine which 

approach was most accurate. 
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Ability Estimation 

From the beginning, we decided to take a Bayesian approach to ability estimation, 

with the intent of incorporating prior knowledge about the student (from previous test 

sessions and grade-based averages). In particular, we initially chose Bayes EAP with good 

results. We briefly experimented with the maximum likelihood estimation (MLE) method 

as well but abandoned it because the computation required more items to converge to a 

reliable ability estimate. To compute the prior integral required by EAP, we used Gauss-

Hermite quadrature with 88 nodes from –7 to +7. This is certainly more than needed, but 

because we were able to save runtime computation by pre-computing the quadrature 

points, we decided to err on the side of accuracy. 

For the Bayesian prior, we used a standard normal distribution centered on the 

student’s ability score from the previous testing period (or the grade-level average for the 

first testing period). We decided to use a standard normal prior rather than using σ from 

the previous testing period to avoid overemphasizing possibly out-of-date information. 

Item Selection and Stopping Criteria 

For our item selection criteria, we simulated 12 variations on maximum 

information gain. The difference in accuracy between the various methods was extremely 

slight, so we gave preference to methods that minimized the number of items required to 

reach a satisfactory standard error (keeping the attention span of children in mind). In the 

end, we settled on selecting the item with maximum Fisher information. In the first 

edition of ISIP Math, we set a 5-item minimum and 20-item maximum per subtest. 

Within those bounds, we ended the assessment when the ability score’s standard error 

dropped below a preset threshold or when four consecutive items each reduced the 

standard error by less than a preset amount. 

This stopping criteria changed with the introduction of math score domains, one of 

the goals of this norms update. A full description of domain scores and how they are 

calculated is available in chapter 4. In the current operational edition of ISIP Math, each 

assessment consists of seven items per math domain, with four domains at each grade. 

Therefore, each student receives 28 items, which exceeds the former stopping criteria. The 

overall and domain scores are calculated with a Bayesian prior, like the original ISIP 

Math. 
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A major goal of the renorming of the ISIP Math was to provide information on 

how students perform in the different math domains. This chapter describes that 

multifaceted process and the care and attention that went into its construction. 

A unique feature of the first edition of ISIP Math was that the items were written 

around misconceptions that students have about math, and they were also written to 

better assess the different levels of cognitive engagement as described previously. Items 

were divided into content strands, otherwise known as domains. While there was 

coverage of the different content strands and alignment to state standards, we needed to 

update the items and identify math domains that were comparable across different 

grades, review the alignment with current standards, and determine which items were 

aligned with the domains. 

Identifying Domains 

To determine the domains, the team consulted the National Council of Teachers 

in Mathematics framework for math content strands and the expectations by grade 

level. The NCTM framework provides expectations by grade clusters for pre-K–grade 2, 

grades 3-5, grades 6-8, and grades 9-12. The team identified expectations and skills by 

grade cluster using this framework. 

The team broke down the clusters to correspond to the Istation assessment, and 

these clusters are pre-K–grade 1, grades 2-5, and grades 6-8. Next, the team reviewed in 

depth the state standards from several states, including California, Florida, New York, 

Texas, Virginia, and the Common Core, and the item specification document used in the 

first edition of the assessment. Using the information from reviewing the standards, 

previous documentation, and the information from the NCTM, they composed four 

domains per grade to make the domains as uniform as possible and aligned them with 

the skills and expectations from the NCTM. Four domains were established for 

prekindergarten through fifth grade, and a separate set of domains was established for 

grades six through eight. 

Chapter 4: Math Domains 
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Computation and Algebraic Thinking is available for all grades, prekindergarten 

through 8. This domain involves performing operations and representing algebraic 

relationships. It includes recognizing and creating patterns, understanding symbols (+, 

−, ×, ÷), learning and applying computation strategies such as solving for an unknown, 

recalling basic facts, and working with expressions and equations. 

Number Sense is available for prekindergarten through grade 5. This domain 

refers to foundational math skills, including properties of whole numbers, fractions, and 

decimals and the relationships between them. This includes representing numbers with 

visual models, understanding place value, counting, rounding, and comparing. 

Number System is available for grades 6 through 8, and it extends the 

foundations in Number Sense to apply these skills to operations. This includes 

understanding the properties of positive and negative numbers, rational and irrational 

numbers, and integers and applying these properties to perform operations. 

Measurement and Data Analysis is for prekindergarten through grade 5. It 

involves determining the size or amount of something. This includes length, weight, 

volume, area, perimeter, capacity (volume), time, and money. Both the customary and 

metric systems are utilized. Data Analysis includes sorting and classifying data into 

categories and using various types of graphs and tables to represent the data. It also 

involves interpreting and explaining patterns and drawing conclusions to solve 

problems about the data. Graphs include picture graphs, bar graphs, line/dot plots, 

tables, and more. 

Statistics and Data Analysis for grades 6 through 8 involves answering statistical 

questions and drawing conclusions based on information about populations. This 

involves organizing data, measuring it quantitatively, and making inferences based on 

patterns and distribution. It also includes measures of central tendency including mean, 

median, mode, and range. 

Geometry for prekindergarten through grade 5 involves understanding properties 

and attributes of shapes, lines, and angles. Students must sort, classify, name, describe, 

and create various shapes. This domain also includes graphing points on the coordinate 

plane. 

Geometry and Measurement for grades 6 through 8 combines concepts of shape 

with measurement. This includes understanding and applying formulas for measuring 

various shapes and angles, comparing attributes of shapes, and using the coordinate 

plane to analyze relationships and solve problems. 



 

37 
 

In addition to these domains, Istation also offers Personal Financial Literacy, 

which is required by the Texas standards. It includes concepts of saving and spending, 

income, budgets, borrowing and lending, credit and debt, and producers and customers. 

It is currently available only through teacher resources, and Istation does not offer 

norms for this domain. 

Probability is another domain that requires students to analyze chance events, 

organize samples, make predictions, and determine solutions to problems. It is only 

available at certain grade levels, which varies by state and region, and Istation does not 

offer norms for this domain. 

The list of domains and sample skills by domain is available in Table 4.1. 
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Computation and Algebraic Thinking 

▪ Operations 
▪ Patterns 
▪ Problem solving with numbers 
▪ Algebraic reasoning 

Geometry 

▪ Reason with shapes and their attributes 
▪ Compose and decompose shapes 

Number Sense 

▪ Counting and cardinality 
▪ Number concepts 
▪ Place value understanding 
▪ Estimations 
▪ Fractional understanding 

Measurement and Data Analysis 

▪ Linear measurement 
▪ Capacity, volume, and mass 
▪ Time and temperature 
▪ Measurable attributes 
▪ Money 
▪ Area and perimeter 
▪ Represent and interpret data 

 

  

Table 4.1. Math Domains for ISIP Math Grades Pre-K to 1  
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Computation and Algebraic Thinking 

▪ Problem solving with measurement 
▪ Problem solving/operations with fractions 
▪ Factors and multiples 
▪ Place value understanding 
▪ Patterns/arithmetic patterns 
▪ Operations 

Geometry  

▪ Angles 
▪ Reason with shapes and their attributes 
▪ Transformation 
▪ Coordinate system 
▪ Compose/decompose shapes 

Number Sense 

▪ Number concepts 
▪ Place value understanding 
▪ Fractional understanding 
▪ Problem solving/operations with fractions 
▪ Compose/decompose shapes 
▪ Problem solving with numbers 
▪ Decimal understanding 

Measurement and Data Analysis 

▪ Linear measurement 
▪ Capacity, volume, and mass 
▪ Time and temperature 
▪ Measurable attributes 
▪ Money 
▪ Area and perimeter 
▪ Operations with measurement 

Probability (Select locations only) 

▪ Predicting outcomes 
▪ Probability models 

  

Table 4.2. Math Domains by Grade for ISIP Math Grades 2 to 5 
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Table 4.3. Math Domains by Grade for ISIP Math Grades 6 to 8 

Computation and Algebraic Thinking 

▪ Equations and inequalities 
▪ Exponents 
▪ Functions 
▪ Proportional relationships 
▪ Systems of equations 

Geometry and Measurement 

▪ Measurement conversions 
▪ Area, volume, and surface area on 2D and 3D polygons 
▪ Coordinate plane 
▪ Scale factor 
▪ Angles 
▪ Transformations 

Number System 

▪ Unit rates and ratios 
▪ Numerical expressions 
▪ Absolute value 
▪ Rational/irrational numbers 
▪ Scientific notation 

Statistics and Data Analysis 

▪ Simple and compound events 
▪ Independent and dependent events 
▪ Probability models 

Probability (Select locations only) 

▪ Simple and compound events 
▪ Independent and dependent events 
▪ Probability models 

The next step was to organize the items in the item bank by domain. They were 

listed as the content strands. The team reviewed the items by grade level by content 

strand and aligned the items with the newly created domains. Team members validated 

one another’s work and also identified items that were not aligned to a domain. Items 

that were not well aligned to standards or a domain were removed from the item bank. 

Stopping Criteria 

With the addition of the math domains, the stopping criteria was changed in the 

assessment. Previously, the algorithm would converge after approximately 16-22 items 
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had been administered. During the 2019-2020 school year, the first administration of 

the assessment contained 40 items with 10 items from each domain in order to establish 

a robust Bayesian prior for each domain. Subsequent administrations built on this, and 

items were administered based on current and prior performance. Items were delivered 

with an even distribution between the domains, and new scores were computed with the 

Bayesian prior and the current items. Beginning in the winter, the domains were 

calculated on at least 5 items per domain, and in the final administration in May, we 

administered another 40-item assessment with 10 items from each domain. In the 

current operational edition, we deliver 7 items from each domain, and the assessment is 

stopped after 28 items. 

Relationship of Item Parameters, Domain Scores, and Overall Scores 

In the operational version of the ISIP Math, the first time students take ISIP 

Math in a given academic year, they are given items of median difficulty for each 

domain. Based on the student’s performance on an item, the next item in that domain is 

either more difficult or less difficult. Seven items are administered for each domain. 

After all of the test items have been administered, an ability score is calculated for each 

domain using the 7 items from the particular domain. The overall score calculation uses 

all 28 items that were administered across the 4 domains. The ability scores for the 

domains are not part of the calculation for the overall scores. 

In subsequent administrations, a Bayesian prior is used for the overall and 

domain scores. The overall score is comprised of the Bayesian prior and the information 

from the item difficulty and discrimination factors for all 28 of the items administered. 

The domain scores are comprised of their Bayesian priors and the item difficulty and 

discrimination factors for the 7 items administered in that domain. It is important to 

note that the Bayesian priors for the domain, and the domain scores, are not factored 

into the overall score. Figure 4.1 displays how the domain scores versus the overall 

scores are derived for prekindergarten through fifth grade. The domain and overall 

scores have a similar relationship in grades 6 through 8. 
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Figure 4.1. Composition of Domain Scores and the Overall Score 

As shown in Figure 4.1, domain scores and overall scores are derived separately, 

and it is important to note that the overall score is the best estimation of a student’s 

math ability. The domain scores are more heavily influenced by what is currently 

taught in the classroom. Therefore, the overall score can be used for assessing students 

for their math ability, and the domain scores can be used to provide relative strengths 

and weaknesses for a student, based on current instruction in the classroom. 

  

 



 

43 
 

Introduction to Vertical Scaling 

Prior to the research described here, ISIP Math test scores were reported using a 

set of grade-specific scales. These distinct scales were derived by calibrating different 

sets of items at different grade levels. That is, the items that were appropriate for grade 

2 were calibrated together using item response theory (IRT) to form the grade 2 scale, 

the grade 3 item pool was calibrated for the grade 3 scale, and so forth. This resulted in a 

set of ISIP Math scales that could be used to described student achievement only within 

their respective grades — not across them.1 In order to allow for cross-grade 

comparisons, Istation developed an alternative to these separate grade-specific scales, 

namely, a vertical scale (Patz & Yao, 2007; Tong & Kolen, 2010; Carlson, 2011; Young & 

Tong, 2015) 

A vertical scale — also referred to as a developmental scale — is an extended score 

scale that spans a series of grades and allows for the estimation of student growth along 

a continuum (Young & Tong, 2015). Having a vertical scale can meet the need for a 

common interpretive framework for test results across grades and yield important 

information that informs individual and classroom instruction.  

  

 

1 These scales were developed for grades 2 through 8 using data gathered during the 2013-2014 

school year, and for grades pre-K through 1 with data from 2014-2015 (Istation, 2018). 

 

Chapter 5: Vertical Scaling 
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For example, vertical scales can be used to: 

• monitor student progress as new knowledge or skills are acquired or 

developed within a content area at different time periods and across the 

grades; 

• examine growth patterns for individual students or groups of students in 

terms of changes in performance and variability from grade to grade; 

• benchmark test items consistent with content standards or curriculum 

frameworks at different grade levels; and 

• match items to a student’s ability level for computer-adaptive testing 

regardless of either the student’s grade level or the original grade level of the 

items (Young & Tong, 2015, p. 450). 

The remainder of this chapter describes the processes that were used to create 

the ISIP Math vertical scale within the framework of item response theory. Typically, 

these scales are created using the same processes for equating alternate test forms2 and 

include item calibrations, the calculation of linking constants, and the application of the 

linking constants to create the scales (Kolen & Brennan, 2004; Carlson, 2011; Young & 

Tong, 2015). However, in the case of the ISIP Math tests, certain adjustments needed to 

be made to both the statistical methods and data collection designs. 

These are described first and include the original data collection design and the 

modifications needed to create a vertical scale for a computer-adaptive testing system. 

This is followed by challenges in implementing the data collection design due to the 

COVID-19 pandemic and the mitigation strategies that were used to address issues that 

arose. The vertical scaling process is described in general terms, and appendices to the 

chapter provide additional details on the IRT parameter estimation procedure used, the 

standard error calculations, the parameter estimate adjustments for measurement error, 

and deriving the linking constants needed to create the final vertical scale. A final 

section evaluates the vertical scale by applying the newly developed scale to ISIP Math 

data taken from the January 2020 student administration.  

 
2 This process is more accurately described as calibration, as the test forms involved are designed 

for different grades with different content and difficulty levels (Kolen & Brennan, 2014). 
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ISIP Math Vertical Scaling Data Collection Design 

Original Data Collection Design 

The vertical scaling study took place in March 2020 as a part of the regular 

monthly test administration in schools using ISIP Math. The data collection used a 

combination of approaches: common-item nonequivalent groups design and random 

equivalent groups design (see Kolen & Brennan, 2004; Kolen, 2007). ISIP Math 

required this combination due to differences in test formats between grades pre-K 

through 1 versus grades 2 through 8. 

In the common-item nonequivalent groups design, sets of common items (also 

referred to as anchor or linking sets) are present on the test forms taken by different 

groups of examinees. These common items can be embedded throughout the test, 

placed together in their own section on the test, or placed together on a section that is 

external to the test. The scores on the common items provide the information needed to 

create the statistical adjustment that puts the scores from two groups (the first group of 

examinees on the first form and the second group on the second form) on the same 

scale. 

In the random equivalent groups design, a single group of examinees is randomly 

assigned to one of two test forms, usually via a spiraling process. The proper 

implementation of this process leads to two groups of examinees that are randomly 

equivalent with respect to their ability. The differential performance of the examinee 

groups on the test that they were assigned is then used to create the statistical 

adjustment to put the two tests on the same scale. 

In developing the data collection for the vertical scale, it was important to take 

into account that ISIP Math is a computer-adaptive rather than a fixed-forms testing 

system. In a computer-adaptive test (CAT) each student is presented with items selected 

sequentially from a pool of items that have been calibrated to be on the same scale. Each 

item is selected to match, to the extent possible, that student’s currently estimated level 

of achievement. Students who answer questions incorrectly will have lower estimates of 

achievement and thus will have less difficult items selected, while students who answer 

questions correctly will have items more difficult selected.3 As students vary in their 

levels of achievement, this results in different students being administered different sets 

 
3 This a simplified explanation of the CAT algorithm and omits important details such as the use 

of item information, exposure control, content balancing, stopping rules, and so forth. 
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of items. The following schematics show how using a CAT can affect the data collection 

design needed to develop a vertical scale. 

The first schematic (Figure 5.1) shows the fixed-forms version of a common-item 

nonequivalent groups design for linking the tests on two grade levels for a vertical scale. 

Here, all students at the lower grade take the same lower-grade-level test, and all 

students at the higher grade take the same higher-grade-level test. A single set of 

common items from the lower grade is used for linking the two tests across the grades. 

However, as shown in Figure 5.2, linking across the grade levels is based on the 

entire pool of items at each grade level and not any particular test form. Students in the 

upper grade receive the set of common items from the lower grade along with the 

different sets of items that the CAT algorithm administers for their grade. The nature of 

computer-adaptive testing necessitates this linking of item pools rather than test forms. 

In this configuration, the common items are not used in calculating each student’s score 

on their CAT. Instead, the common items are being used as an external link of the lower 

and upper grades.4 

 

Figure 5.1. Schematic of Common-Item Nonequivalent Groups Design For Linking 
Together Fixed-Forms of a Test 

 

 
4 When the set of common items is used in calculating student test scores, it is referred to as an 

internal link (Kolen & Brennan, 2004, p. 19). 
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Figure 5.2. Detail of Common-Item Nonequivalent Groups Design for Linking Together 
the Item Pools of a Computer-Adaptive Test 

Keeping this in mind, Figure 5.3 below shows a simplified view of the originally 

planned data collection design for the vertical scaling study. The rows of the figure 

denote the grades of the students in the study while the columns show the grade level of 

the items that they were administered. The boxes in the figure represent the groups of 

students taking the test content that is targeted to their level, and the different colors 

indicate the differences in test format between the lower grade levels (orange) and upper 

grade levels (blue). 

The common-item nonequivalent groups design was used for most pairs of grade 

levels by choosing multiple sets of common items from the lower grade level and 

administering them to students at the higher grade level. For example, sets of items 

taken from the grade 4 item pool were selected and administered to students in grade 5. 

Using common items from only the lower grade was done to avoid possible frustration 

for students in the lower grade if they had been presented with items from a higher 

grade. 
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Figure 5.3. A Simplified Schematic of the Original Data Collection Design for ISIP Math Vertical 
Scaling 

Figure 5.3 shows a combination of both the common-item nonequivalent groups 

design for most of the grade levels, and the random equivalent groups design for linking 

grades 1 and 2. Rather than having, say, a single set of 20 common items to use as the 

only link between a pair of grades, it was decided to reduce the amount of additional 

testing time for students in the study by employing multiple, five-item sets of common 

items. Each item set was to be taken by separate samples of students of roughly equal 

numbers, and the item sets were randomly administered via spiraling at the student 

level (Kolen & Brennan, 2004). 

The common-item nonequivalent groups design was implemented at all grade 

levels within each of the grade spans pre-K–1 and 2–8. However, looking across grade-

level spans, the format of the tests for grades 1 and 2 differed so greatly that it was not 

considered possible to “bridge the gap” using sets of common items, as the item features 

would vary too greatly. Here, it was decided to employ the equivalent groups design for 

the “cross-span” linkage needed for this pair of grades. Specifically, grade 1 students in 

the study were to be randomly administered either a grade 1 test or a grade 2 test. 

Similarly, the grade 2 students were also to be randomly assigned either a grade 1 or a 

grade 2 test. The differences in performance on the two tests at each grade level could 

then be taken as the difference in their difficulty (Kolen & Brennan, 2004). 
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The Impact of COVID-19 on the Data Collection 

The planned data collection for the vertical scaling study was affected due to 

COVID-19-related school closures starting in mid-March 2020. The drastic shortening 

of the original March-through-May testing window for the data collection resulted in 

fewer total students being sampled than had been originally planned for the study. In 

addition, the spiraling mechanism for assigning students became unbalanced, resulting 

in both the numbers of students and their level of achievement varying widely from item 

set to item set due to the lack of balanced, random assignment. In order to improve the 

sampling, additional student data responses were collected by targeting items sets with 

few responses and assigning them to students taking ISIP Math on their devices at home 

rather than during an in-school administration. 

These data collection issues had several consequences. First, the varying sample 

sizes meant varying degrees of precision in the item parameter estimates needed to 

create vertical scaling constants for linking grade-level scales. The lack of proper 

spiraling and the use of at-home test administrations meant that student responses may 

have been affected due to bias in the samples, such as the non-selection of students 

without home internet access, distractions during testing, increased/decreased 

motivation, receiving external assistance on the test, and so forth. 

However, the greatest impact to the original data collection design was in the 

planned use of the equivalent groups design for grades 1 and 2. This part of the data 

collection had not yet occurred when the school closures began and was deemed too 

difficult to implement properly in the home setting, as it required each student to take 

two tests rather than a single test as for the other grades. 

The general approach to dealing with these challenges was to make use of various 

sources of ancillary information in addition to the data that were collected, and to apply 

analysis approaches that made better use of the data to estimate the parameters needed 

to create the vertical scale. The specific strategies that were used to mitigate the data 

collection issues are briefly described in Table 5.1. 
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Table 5.1. Mitigation Strategies Used to Deal with Data Collection Issues in the ISIP Math 
Vertical Scaling Study 

Issue Mitigation Strategy  
Students’ testing may have 
been affected by the COVID-
19-related data collection 
issues such that students are 
either underperforming or 
overperforming on their 
ISIP Math tests. 

Identify students whose ISIP Math test scores may have been 
affected by changes in the data collection processes by screening for 
outlier scores. 

Use each student’s prior, in-school ISIP Math CAT scores as a 
covariate and regress their overall CAT scores from the study on 
them. 

Examine the residuals from the fitted model to flag and potentially 
remove as outliers those students whose predicted scores are much 
less than/greater than their study test scores. 

Student achievement of 
sampled students is 
unbalanced across item 
pools. 

Adjust the student samples by post-stratifying on student 
performances defined by ISIP Achievement Levels to achieve more 
equal levels of student achievement across the item pools. 

Use the distribution of Achievement Levels across the entire sample 
as the target for creating the post-stratification weights for the item 
pools. 

Use the reweighted item-pool samples for estimating the 
parameters needed. 

Smaller sample sizes lead to 
less precise parameter 
estimates and vertical 
scaling constants. 

Only the estimates of the item parameters are needed to create the 
linking constants for the vertical scale. 

Use the known estimates of student ability (i.e., thetas, ISIP scale 
scores) from the students’ CAT as ancillary information to better 
estimate the item parameters. 

Use extensive screening of the resulting parameter estimates based 
on their statistics prior to applying a robust procedure to calculate 
the vertical equating constants. 

Vertical scale was created 
and validated while missing 
the equivalent groups part of 
the data collection for grades 
1 and 2. 

Approximate the vertical equating constant to be used as the link 
between grades 1 and 2. 

Use as ancillary information the historic on-grade data for ISIP 
Math CAT scores and the MetaMetrics Quantile Framework scale 
scores associated with them. 

Make use of the pre-existing relationship between the Quantile 
Framework vertical scale with ISIP Math’s separate grade-level 
scales to inform the amount of spacing that would be represented 
by an approximated vertical scaling constant for grades 1 and 2. 

Create the full vertical scale that is based on the approximated 
grades 1-2 vertical equating constant and the estimated vertical 
scaling constants at the other grades. 

Transform the historic test data onto this new vertical scale and 
examine the student performance both within and across grade 
levels, smoothing appropriately. 
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Figure 5.4. Final data collection design for ISIP Math vertical scaling 

Figure 5.4 shows change to using only the common-item nonequivalent groups 

design and the use of the MetaMetrics Quantile Framework vertical scale to inform the 

linkage between grades 1 and 2. This general approach in using ancillary data was 

driven by the fact that students in the study were regularly administered ISIP Math tests 

in their schools. Typically, they had several test sessions worth of data that had been 

accumulated prior to, and in addition to, the data from the vertical scaling study. 

Different sources of ancillary information were used to: 

• aid in identifying student performance outliers;  

• post-stratify the data based on the item-set taken and student performance 

levels; 

• create the covariate used to estimate item parameters; and 

• inform the creation and validation of the vertical scale. 

Given the issues cited above and the proposed mitigation strategies described in 

Table 5.1, the final data collection design that resulted is shown in Figure 5.4. The 

schematic shows the removal of the random equivalent groups part of original data 

collection design for grades 1 and 2, leaving only the common item links at the other 

grades. The Quantile Framework vertical scale scores — ancillary data that will be used 

to approximate a vertical scaling constant at grades 1 and 2 — are shown by the grey box 

that spans across grades. 
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Vertical Scaling Study Methods 

Data Collected 

As described earlier, in the common-item nonequivalent groups design, sets of 

items from the lower grade’s item pool were selected and administered to students at 

the higher grade. These sets of common items are used to provide the information 

needed to create the statistical adjustment for putting the item parameters obtained at 

one grade level on the same scale as the item parameters from a different grade level. 

Table 5.2 summarizes the numbers of item sets, items, and students used in the study. 

Grade Band Grades 1  

Number 
of  Item 

Sets  
Number 
of  Items 

Number 
of  

Students  

Number 
of  

Students 
per Item 

Set 

Early Elementary K–1 40 197 42,208 1,055.2 

Late Elementary 3–5 35 175 56,990 1,628.3 

Middle School 6–8 18 88 6,788 377.1 

Overall K–8 93 460 105,986 1,139.6 

1Grades indicated are those for which data were collected, not the grades of the items used. Thus, approximately 
42,000 students in kindergarten were administered 197 items taken from prekindergarten in 40 different sets. 

 

The number of students in the study at each grade band are in line with the 

number of schools that currently administer the ISIP Math tests. That is, most schools 

use the tests at the early and late elementary levels with far fewer schools administering 

the tests to middle school students. 

Table 5.2. Summary of the Numbers of Item Sets, Items, and Students Used in the Vertical 
Scaling Study by Grade Band 
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Preparation for Data Analysis 

The data collected in the study were broken up into grade-specific files. Each file 

included fields showing the: 

• test administration date and unique student identifier; 

• student’s ISIP Math CAT scale score, scale score standard error, normative 

percentile rank of the student scale score, and the MetaMetrics Quantile scale 

score (QSS); 

• grade of the student taking the item and the grade of the item taken; 

• specific item-set ID and item IDs administered to a student, the discrimination 

and difficulty parameters of each of those items, the student’s specific response; 

• student’s Math CAT scale score and standard error from the test administration 

immediately prior to their study administration; and 

• studentized residuals from regressing each student’s Math CAT scale score from 

the study on their previous scale score. 

Once the files were uploaded, the data preparation steps included: 

• checking all variables for out-of-bound and missing values; 

• verifying item-set ID and item ID information against test specification 

documents; 

• independently verifying the item parameters in the file against the original item-

bank source files; 

• removing any duplicate student cases or cases with completely missing item 

response strings; 

• standardizing the ISIP scale scores and standard errors to have a mean of zero 

and a standard deviation of one; and 

• creating achievement levels based on scale score quintiles. 

In order to identify students whose scores may have been affected by changes in 

the data collection processes, we checked their ISIP Math CAT scores for outliers. At 

each grade, the students’ prior, in-school ISIP Math CAT score was used as a covariate, 

and their overall CAT scores from the study were regressed on them. The studentized 

residuals from the fitted models were used to flag and remove as outliers students whose 

residuals were less than −2.00 or greater than 2.00. 
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Finally, the data were post-stratified by item-set ID and achievement level 

quintile in order to have a better balance of student achievement across the item sets 

within a grade. The overall distribution of achievement level quintiles for the grade was 

used as the target set of percentages for the post-stratification procedure. 

Item Calibration Procedures 

The next step in the process after the data were prepared was to analyze the 

students’ responses using item response theory (IRT). IRT is a measurement model that 

relates the probability of success in answering a question correctly to two components: 

the ability of the student and the characteristics of the item. 

The two-parameter logistic (2PL) model was originally used to calibrate the ISIP 

Math items (Istation, 2018). In this model, the probability of a correct response (i.e., 1) 

is given by 

𝑝 = 𝑃(𝑋 = 1|𝜃) =
exp[𝑎(𝜃 − 𝑏)]

1 + exp[𝑎(𝜃 − 𝑏)]
=

1

1 + exp[−𝑎(𝜃 − 𝑏)]
 

where a is the item discrimination parameter, b is the item difficulty parameter, and 𝜃 is 

the person ability parameter. In this model, all three parameters need to be estimated 

from the data. 

To make better use of the data that had been collected in the current study, an 

alternative parameterization of the 2PL IRT model was used wherein 

logit(𝑝) = ln(𝑝/(1 − 𝑝)) = 𝐴𝜃 + 𝐵 

and the item discrimination and difficulty parameters are changed to a slope parameter 

A and an intercept parameter B, and 𝜃 is the person ability parameter as before. By 

using this slope-intercept parameterization, we were able to take advantage of ancillary 

data that had been collected during the study, namely, the ability estimates of the 

students that had been derived separately from their CAT. Because what interested us 

were the estimates of the item parameters and not the person ability parameters, we 

estimated the model 

logit(𝑝) = 𝐴𝜃 + 𝐵 

using the standard technique of logistic regression (LR) (Hosmer, Jr. et al., 2013; 

DeMaris, 1992; Gelman & Hill, 2007). We then transformed the estimated slope- and 

intercept-parameters (A and B) back into the IRT discrimination and difficulty 
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parameters (a and b) needed to create the vertical scale. Additional details regarding the 

2PL IRT model and logistic regression are presented in Appendix 5.1. 

The transformations of the slope parameter A and the intercept parameter B back 

to the IRT parameterization were straightforward. However, the transformations of the 

standard errors of A and B, 𝜎𝐴and𝜎𝐵 , from the LR scale to the IRT scale were more 

complicated and were approximated using the delta method (Oehlert, 1992; Kolen & 

Brennan, 2004). These details can be found in Appendix 5.2. 

An additional step was needed in the parameter estimation process as 𝜃, the CAT 

estimate of the student’s unknown ability 𝜃,was used as a covariate rather than 

estimated along with the item parameters. As the effects of measurement error in 

covariates can bias parameter estimates in statistical models (Carroll et al., 2006, p. 1), 

it was important to take this into account for the parameters that would be used in the 

operational ISIP Math computer-adaptive tests going forward. The simulation-

extrapolation method (SIMEX) (Cook & Stefanski, 1993; Hardin et al., 2003; Lederer & 

Küchenhoff, 2006; Shaw & Keogh, 2017) was used to take the item parameters that had 

been estimated using the logistic regression and adjust them to account for the 

measurement error inherent in the students’ CAT ability estimates. The SIMEX method 

is discussed and the algorithm used to implement it is provided in Appendix 5.3. 

Post-Calibration Item Checks 

Three sets of checks were used to determine which items would be used to 

develop the equating constants needed to create the ISIP Math vertical scale. The checks 

were applied sequentially. 

The first set of checks examined the statistical quality of the item parameters that 

had been estimated during the calibration process. For each grade in the study for which 

data had been collected, items were flagged for further inspection and possible 

elimination according to the following criteria: 

• Discrimination parameters (a-parameters) were flagged as “low” when less or 

equal to 0.20 and “high” when greater than or equal to 2.00. 

• Difficulty parameters (b-parameters) were flagged as “low” when less than or 

equal to -3.00 and “high” when greater than or equal to 3.00. 

• Item fit statistics were calculated using Bock’s (1972) chi-squared procedure with 

eight subgroups, and with the expected proportions based on the item parameter 

estimates the from the 2PL model, and the median of the ability estimates within 
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a subgroup (Stone & Zhang, 2003, p. 332). Items were flagged at both the 0.05 

and the 0.01 significance levels. 

The second check examined the cross-grade difficulty values of the common 

items. In the context of vertical scaling, one would anticipate that the difficulty of items 

taken from a lower grade should be the same or lower when administered to students at 

a higher grade, since the students at the higher grade are further along in their 

education and are presumably already familiar with the content. Apart from sampling 

and measurement error, the expectation would be that on average, the item parameter 

difficulties at the higher grade should be less than or equal to those at the lower grade. 

Items not exhibiting this kind of behavior would violate this expectation and not 

necessarily be appropriate for use in creating a vertical scale. 

The final set of checks used the robust z procedure (Huynh & Meyer, 2010) to 

assess which of the common items were reasonably “stable” across each of the pairs of 

grade levels being linked together. In this procedure, the differences between item 

parameter estimates are compared to the overall median of the differences and then 

standardized by the interquartile range to create a robust version of the usual z-statistic. 

That is, 

 𝑧𝑅𝑜𝑏𝑢𝑠𝑡 =
(𝐷𝑗 −𝑀𝑑)

(0.74 ∙ 𝐼𝑄𝑅)
⁄  

where 𝐷𝑗is the difference of the jth pair of parameters being examined, Md is the median 

across all of the pairs of parameter differences, and the denominator equals the 

interquartile range multiplied by a constant to scale it to be approximately equal to the 

standard deviation of a normal distribution. When the 𝐷𝑗  are normally distributed, the 

𝑧𝑅𝑜𝑏𝑢𝑠𝑡statistic is asymptotically normal with a mean of zero and a standard deviation of 

one (Huynh & Meyer, 2010, p. 2). Item pair differences with an absolute value of robust 

z greater than 1.96 were flagged for further review and possible administration. 

  



 

57 
 

Table 5.3 presents the results of applying these checks both overall and by grade 

band. The result of sequentially applying these item quality and stability checks was to 

reduce the initial pool of 460 items across the grade levels to a final pool of 200 items 

that were used to create the vertical scale. 

Grade Band Grades Initial  
After Item 

Flagging 

After 
Robust Z 
Flagging 

Early 
Elementary 

K–1 197 83 76 

Late Elementary 3–5 175 65 55 

Middle School 6–8 88 86 69 

Overall K–8 460 234 200 

 

  

Table 5.3. Initial and Final Numbers of Items Used to Create Equating Constants After Item and 
Robust Z Flagging by Grade Band 
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Determining the Linking Constants 

The final sets of item parameters coming out of the previous step were used to 

develop the linking constants (i.e., statistical adjustments) needed to create the ISIP 

Math vertical scale. The schematic in Figure 5.4 shows the two kinds of linkages that 

needed to be considered in order to do this. 

 

Figure 5.4. Schematic of Pairwise and Anchor-Grade Linkages of Item Pools in the ISIP 
Math Vertical Scaling 

Each of the boxes in the figure represents an item pool at one of the grade levels 

of the ISIP Math tests with the lines depicting the linkage from one grade level pool to 

another. The left part of the schematic depicts pairwise linkages where each grade’s item 

pool is linked to either the item pool of the grade immediately above it or below it. In 

this figure, the pre-K item pool is linked to the kindergarten item pool, the kindergarten 

item pool is linked to the grade 1 item pool, and so forth, going up the grades. Similarly, 

we can go down the grade levels by starting with the grade 8 item pool and linking it to 

the grade 7 item pool, etc. 

As a result of the data collection design and the calibrations that were performed 

using the ISIP Math data, each pair of grades had a set of common items with two sets of 

item parameters, one for each grade. For example, consider the set of common items for 
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grades 4 and 5. Since the common items were taken from the grade 4 item pool, each 

item had a set of pre-existing discrimination and difficulty parameters that were on the 

grade 4 scale. These same common items were administered to students at grade 5 and 

calibrated to have a different set of item discrimination and difficulty parameters. 

Now, in item response theory, when the same set of items has been calibrated 

with two different groups, the resulting scales are linearly related, and so a linear 

function can be used to transform one scale into the other (Kolen & Brennan, 2004). 

That is, we can find linking constants — in this case a slope and an intercept — that can 

be used to transform the measures of student ability and the item parameters from one 

scale into another. 

In our example, this means we can find a slope and an intercept such that  

𝐺𝑟𝑎𝑑𝑒4𝑆𝑐𝑎𝑙𝑒𝑉𝑎𝑙𝑢𝑒𝑠 = 𝑠𝑙𝑜𝑝𝑒 ∙ (𝐺𝑟𝑎𝑑𝑒5𝑆𝑐𝑎𝑙𝑒𝑉𝑎𝑙𝑢𝑒𝑠) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

that is, transforming the grade 5 scores so that they are on the same scale as the grade 4 

scores. The same kind of analysis can be performed to create linking constants for all the 

other pairs of grades shown in the left of Figure 5.4 and extended to create linking 

constants that can be used to place the scores for any grade’s scale on the scale of a 

single chosen grade, as shown in the right of the figure. 

Here, each specific grade-level scale has been linked to a single anchor (or target) 

grade, namely grade 4. To go to the anchor grade from a non-adjacent grade simply 

requires the composition of the functions for all of the pairwise links between them. For 

instance, to go from grade 6 to grade 4 first requires us to transform the grade 6 scores 

to be on the grade 5 scale, then to transform these scores to the grade 4 scale. 

By using this approach of creating a “chain” from multiple links, we can take all 

of the pairwise sets of linking constants and use them to produce the final set of vertical 

linking constants that were desired. The details of this process are presented in 

Appendix 5.4. 

Creating the Final Vertical Scale 

For the most part, the linking constants were calculated for the pairwise grade 

level scales described above. They were then used to create the constants linking each 

grade’s scale to the scale of the anchor grade by compositing the linear transformations 

of the pairwise links between each starting grade and the anchor grade. 

Grade 4 was chosen to be the anchor grade as it was roughly in the middle of the 

grades and would thus reduce the total number of links needed to go from any other 
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grade to it. For example, if grade 8 had been chosen as the anchor grade, then there 

would have been nine links needed to go from pre-K to grade 8. Using grade 4 as the 

anchor grade ensured that the number of links needed would never be greater than five. 

The final set of linking constants is shown below in Table 5.4. 

Starting  
Grade 

Anchor  
Grade 

Slope Intercept  

Pre-K 4 1.3534 -6.3457 

K 4 1.3550 -4.1587 

1 4 1.1440 -2.2464 

2 4 1.0119 -1.0255 

3 4 0.9401 -0.3285 

4 4 1.0000 0.0000 

5 4 0.9552 0.2489 

6 4 1.1370 0.5084 

7 4 1.6292 0.5850 

8 4 1.4148 0.6809 

 

The only exception to this process occurred in creating the pairwise link between 

the grade 1 and grade 2 scales. Here, the median values of the slopes and intercepts 

from the K-to-grade 1 and the grade 2-to-3 linear transformations were used to define 

the grade 1-to-2 transformation. This choice of linking constants was found to produce a 

smooth progression across the pre-K to grade 4 span when the final linking constants in 

Table 5.4 were calculated. 

In order to create the final vertical scale, each of the original grade-specific ISIP 

Math scales with a mean of 2000 and a standard deviation of 200 (SSOriginal) were 

transformed to be on their original logit scales (LogitOriginal) with a mean of zero and a 

standard deviation of one: 

𝐿𝑜𝑔𝑖𝑡𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = (𝑆𝑆𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 2000)/200. 

Next, the logit scores for each grade were transformed to a vertically scaled logit score 

(LogitVerticalScale) by applying the grade-specific slope and intercept from Table 5.4: 

Table 5.4. Linking Constants (Slopes and Intercepts) From Starting to Anchor Grade 
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𝐿𝑜𝑔𝑖𝑡𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑆𝑐𝑎𝑙𝑒 = 𝑆𝑙𝑜𝑝𝑒𝐺𝑟𝑎𝑑𝑒𝐾 ∙ 𝐿𝑜𝑔𝑖𝑡𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝐺𝑟𝑎𝑑𝑒𝐾 

Finally, the vertically scaled logit scores were linearly transformed to a new ISIP Math 

reporting vertical scale (SSNew): 

 𝑆𝑆𝑁𝑒𝑤 = 𝑆𝑙𝑜𝑝𝑒𝑆𝑆𝑁𝑒𝑤 ∙ 𝐿𝑜𝑔𝑖𝑡𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑆𝑐𝑎𝑙𝑒 + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑆𝑆𝑁𝑒𝑤 

There were two main considerations that guided the development of the final 

reporting scale. First, the new ISIP Math scale needed to have a range of values that was 

distinct from the ranges of the original scales. This was necessary to emphasize the fact 

that ISIP Math was now on a single vertical scale that was different from the individual 

grade-specific scales and to avoid confusion between the two scaling systems going 

forward. 

The second consideration had to do with clearly specifying what the lowest 

obtainable scale score (LOSS) and the highest obtainable scale score (HOSS) would be 

on the new scale. The concern here was having an underlying vertical scale that would 

support the full range of student achievement on the current tests while allowing for 

extended levels of student achievement if high school levels were added to the ISIP Math 

tests in the future. 

The slope and intercept of this transformation were chosen so that the vertically 

scaled logit scores of -9.00 and 8.00 corresponded to vertically scaled reporting scores of 

100 and 900 respectively. This resulted in linear transformation coefficients of a slope of 

47.058824 and an intercept of 523.529408. 

Evaluation of the Vertical Scale 

Kolen and Brennan (2004) provide three attributes of scales that have been used 

to evaluate the results of a vertical scale: 

• the average grade-to-grade growth; 

• grade-to-grade variability; and 

• the separation of grade distributions. 

These attributes were examined using ISIP Math student data taken from the 

January 2020 test administration. The student scores from this administration were 

transformed from their original grade-specific scales to the new ISIP Math reporting 

vertical scale. The results of applying these transformations are shown in Figure 5.5 and 

Table 5.5. 
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Figure 5.5. ISIP Math final reporting growth curves: Scale score means and confidence 
bands by grade level (Source: ISIP Math January 2020 test administration data)  
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Lower 
Grade 

Upper 
Grade Difference  Pooled SD Effect Size  

Pre-K K 109.4 74.7 1.47 

K 1 83.9 70.3 1.19 

1 2 37.0 54.1 0.68 

2 3 20.6 41.4 0.50 

3 4 21.5 42.2 0.51 

4 5 13.4 48.2 0.28 

5 6 15.0 51.9 0.29 

6 7 4.4 55.1 0.08 

7 8 9.0 58.2 0.16 

The figure and the table clearly show that the grade-to-grade growth is 

curvilinear with the greatest growth occurring from pre-K through grade 2, lessening 

from grade 2 through grade 4, and leveling off above grade 4. This pattern is similar to 

other vertically scaled achievement tests such as the Stanford Achievement Test series 

(10th Edition) (Young & Tong, 2015). 

Interestingly, the grade-to-grade variability decreases through the end of grade 4 

but then begins to increase again. This may be indicative of the changes in the spread of 

student achievement during the transition from the elementary curriculum to that of the 

middle school curriculum. 

Finally, the effect-size measures decrease from nearly 1.5 standard deviations at 

the lowest grades to around one-tenth of a standard deviation at the highest grades. This 

indicates a clear separation of the student achievement distributions at the lower 

elementary grades with the distributions becoming more and more overlapped as the 

students move into middle school and the curriculum changes. 

  

Table 5.5. ISIP Math Vertical scale grade-to-grade growth, variability, and distribution 
separation (Source: ISIP Math January 2020 test administration data) 
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Appendix 5.1: Item Calibration Using Ancillary 
Information 

The measurement model originally used to calibrate the dichotomously scored5 

multiple-choice items of ISIP Math tests was the two-parameter logistic (2PL) item 

response model (IRT). In this model, the probability of a correct response (i.e., 1) is 

given by 

𝑝 = 𝑃(𝑋 = 1|𝜃) =
exp[𝑎(𝜃 − 𝑏)]

1 + exp[𝑎(𝜃 − 𝑏)]
=

1

1 + exp[−𝑎(𝜃 − 𝑏)]
 

where a is the item discrimination parameter6, b is the item difficulty parameter, and 𝜃 

is the person ability parameter. Similarly, the probability of an incorrect response 

(i.e., 0) is given by  

1 − 𝑝 = 𝑃(𝑋 = 0|𝜃) =
1

1 + exp[𝑎(𝜃 − 𝑏)]
=

exp[−𝑎(𝜃 − 𝑏)]

1 + exp[−𝑎(𝜃 − 𝑏)]
. 

The parameterization shown above using a and b is the one most seen in introductions 

to the 2PL model and can be thought of as the IRT parameterization. 

An alternate parameterization can be derived by re-writing the exponent in the 

equations above as 

𝑎(𝜃 − 𝑏) = 𝑎𝜃 − 𝑎𝑏 = 𝑎𝜃 + (−𝑎𝑏). 

Then, setting 𝐴 = 𝑎 and 𝐵 = −𝑎𝑏, we see that 

 𝑎(𝜃 − 𝑏) = 𝐴𝜃 + 𝐵. 

This change recasts the item discrimination and difficulty parameters as a slope 

parameter A and an intercept parameter B respectively. If we use this slope-intercept 

parameterization, then 

𝑝 = 𝑃(𝑋 = 1|𝜃) =
exp[𝐴(𝜃 + 𝑏)]

1 + exp[𝐴(𝜃 + 𝑏)]
=

1

1 + exp[−𝐴(𝜃 + 𝑏)]
 

and 

 
5 Dichotomous items such as multiple-choice items are usually scored as 1 for a correct answer 

and 0 for an incorrect answer. 
6 For notational convenience, we will assume that the item discrimination parameter already 

includes the usual scaling factor of D = 1.7 to make the logistic item response curve similar to that of the 
normal ogive curve. 
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1 − 𝑝 = 𝑃(𝑋 = 0|𝜃) =
1

1 + exp[𝐴(𝜃 + 𝐵)]
=

exp[−𝐴(𝜃 + 𝐵)]

1 + exp[−𝐴(𝜃 + 𝐵)]
. 

Using this parameterization and looking at the odds-ratio of the probably of a 

correct response vs. an incorrect response, we get (after some algebraic simplification): 

 𝑝/(1 − 𝑝) = exp(𝐴𝜃 + 𝐵). 

Finally, taking the natural log of both sides of this equation then yields an alternative 

formulation of the 2PL IRT model as 

 logit(𝑝) = ln(𝑝/(1 − 𝑝)) = 𝐴𝜃 + 𝐵. 

In this equation, the logit or log-odds of obtaining a correct response for an item is a 

linear function of a student’s ability 𝜃 with slope and intercept parameters A and B 

respectively (Baker & Kim, 2004; Engec, 1998). 

It is very important to note in either one of these formulations that both the item 

parameters – A and B for the logit version or a and b for the IRT version – and the 

person parameter, are unknown and need to be estimated. However, if we were to use 

the person parameter for each student that is estimated by their ISIP Math CAT as a 

covariate, then we could model the logits as 

 logit(𝑝) = 𝐴𝜃 + 𝐵 

using the standard technique of logistic regression (LR) (Hosmer, Jr. et al., 2013; 

DeMaris, 1992; Gelman & Hill, 2007). This would provide us with the opportunity of 

estimating the A and B parameters, and consequently, transforming them into the IRT a 

and b parameters we need to estimate for creating our vertical scaling constants. 
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Appendix 5.2: Adjusting for Measurement Error 

As stated elsewhere in this technical report, the logistic regression model being 

fitted to estimate the item parameters is of the form  

 logit(𝑝) = 𝐴𝜃 + 𝐵 

where 𝜃 is the CAT estimate of a student’s unknown, ability 𝜃. 

The effects of measurement error in covariates include bias in parameter 

estimation for statistical models (Carroll et al., 2006, p. 1). In the case of using logistic 

regression to estimate IRT item parameters, this is of major concern as these estimates 

will be used in the operational ISIP Math computer-adaptive tests going forward. 

The amount of measurement error in the ISIP Math computer-adaptive tests can 

be estimated looking at the error associated with 𝜃, namely its standard error 𝑆𝐸(𝜃). 

This information can be used with the simulation-extrapolation method (SIMEX) (Cook 

& Stefanski, 1993; Hardin et al., 2003; Lederer & Küchenhoff, 2006; Shaw & Keogh, 

2017) to provide item parameter estimates that have been adjusted to account for 

measurement error. In this approach, “error of increasing amounts is added artificially 

to data, and a relationship between the size of the error and regression coefficients is 

estimated” (Shaw & Keogh, 2017, p. 3). The regression coefficients are then extrapolated 

for the case when there is zero measurement error. 

SIMEX has been used in the educational measurement context by Shang and his 

colleagues (Shang, 2012; Shang et al., 2015) to correct for measurement error in 

covariates for when estimating quantile regressions and student growth percentiles 

(SGP). They found that SIMEX was effective in reducing bias for both individual and 

aggregate student growth percentiles. 
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The following description of the SIMEX algorithm is based on those of Hardin et al 

(2003) and Shaw and Keogh (2017), and has been particularized for ISIP Math analyses. 

The R package simex (Lenhard & Seibold, 2019) was used for the analyses. 

The setup: 

• We start by assuming additive error in our estimate of student ability, the 

covariate 𝜃 = 𝜃 + 𝑢,where 𝑢~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2). 

• We use a regression model for an outcome Y that includes 𝜃. Since we are using 

logistic regression, model is of the form logit(𝑝) = 𝐴𝜃 + 𝐵 + 𝜖. However, due to 

the measurement error, we are observing 𝜃 rather than 𝜃. 

• To obtain an estimate of the measurement error associated with 𝜃,  

we used the mean of the error variances of the estimated abilities across persons 

and items within an item set p, 𝑉𝑎𝑟(𝜃𝑝) = [𝑆𝐸(𝜃𝑝)]
2. 

The simulation step of the SIMEX procedure: 

• For each item in the p-th item set, we run K bootstrap iterations, based on our 

estimate of the error variance 𝑉𝑎𝑟(𝜃𝑝), and on the different values of a scaling 

factor 𝜆 > 0, where 𝜆 ∈ {0.5, 1.0, 1.5, 2.0}. The changes in the scaling factor are 

used to model the effect of changes in the covariate on the amount of 

measurement error. 

• For the k-th bootstrap, generate 𝜃𝑘,𝑖 = 𝜃𝑖 + √𝜆𝑆𝐸(𝜃𝑝)𝑍𝑘,𝑖 for each value of λ 

where 𝑍𝑘,𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) and 𝜃𝑖 is the ability estimate for the i-th student on an 

item. This step just adds in the measurement error. 

• Since 𝜃𝑝and 𝑍𝑘,𝑖 are independent, the total error variance in 𝜃𝑘,𝑖 will be 

𝑉𝑎𝑟(𝜃𝑘,𝑖) = 𝑉𝑎𝑟(𝜃𝑖 + √𝜆𝑆𝐸(𝜃𝑝)𝑍𝑘,𝑖) = 𝑉𝑎𝑟(𝜃𝑖) + 𝑉𝑎𝑟(√𝜆𝑆𝐸(𝜃𝑝)𝑍𝑘,𝑖) 

= 𝑉𝑎𝑟(𝜃𝑝) + [√𝜆𝑆𝐸(𝜃𝑝)]
2
𝑉𝑎𝑟(𝑍𝑘,𝑖) = 𝑉𝑎𝑟(𝜃𝑝) + 𝜆𝑉𝑎𝑟(𝜃𝑝) 

= (1 + 𝜆)𝑉𝑎𝑟(𝜃𝑝). 

• Next, we fit the logistic regression model of interest with 𝜃𝑘,𝑖 in place of 𝜃𝑖. That 

is, we fit logit(𝑝) = 𝐴𝑘,𝜆𝜃𝑏,𝑖 + 𝐵𝑘,𝜆. 

• Obtain overall estimated parameters �̂�𝜆 and �̂�𝜆 for each 𝜆 as the mean of the K 

bootstrap estimates of 𝐴𝑏,𝜆𝑎𝑛𝑑𝐵𝑏,𝜆. 
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The extrapolation step of the SIMEX procedure: 

• Now, we fit curves to the pairs of generated parameters (𝜆, �̂�𝜆) and (𝜆, �̂�𝜆). That 

is, we will fit two functions, �̂�𝜆 = 𝑓𝐴(𝜆)and�̂�𝜆 = 𝑓𝐵(𝜆), one for each of the 

parameters. These functions will be used to describe the change in parameter 

estimates as a function of the amount of measurement error. 

• Although a variety of functions could be used to model these relationships, a 

quadratic function such as 𝑓(𝜆) = 𝛿0 + 𝛿1𝜆 + 𝛿2𝜆
2 has been shown to work well 

in practice (Lederer & Küchenhoff, 2006; Shaw & Keogh, 2017). 

• Finally, the SIMEX estimators for the logistic regression parameters are the 

fitted values �̂�𝜆 = 𝑓𝐴(−1) and �̂�𝜆 = 𝑓𝐵(−1). This is because at the value 𝜆 =

−1,the error variance goes to zero since 𝑉𝑎𝑟(𝜃𝑘,𝑖) = (1 + (−1)) ∙ 𝑉𝑎𝑟(𝜃𝑝) = 0 ∙

𝑉𝑎𝑟(𝜃𝑝) = 0. 

The jackknife procedure developed by Stefanski and Cook (1995) was used to 

estimate the variances of the SIMEX-adjusted item parameters. Finally, as these 

estimates were in terms of the slope-intercept parameterization used by the 

logistic regression model, they were transformed back to the IRT 

parameterization described in Appendix 5.1.  
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Appendix 5.3: Transforming Logistic Regression 
Standard Errors to IRT Standard Errors Using the 
Delta Method 

Using logistic regression allowed for the ability of each student from their 

computer-adaptive test to be employed as a covariate in estimating item response 

parameters, and the student ability is subsequently adjusted for measurement error 

using the SIMEX procedure. However, the LR-estimated parameters and their standard 

errors needed to be transformed back to the IRT parameterization that Istation needed 

for the operational administration of their testing system. 

The transformations of the slope parameter A and the intercept parameter B back 

to the IRT parameterization is straightforward and given by 𝑎 = 𝐴and𝑏 = −𝐵 𝐴.⁄  

However, the transformations of the standard errors of A and B, 𝜎𝐴and𝜎𝐵 , from the LR 

scale to the IRT scale are more complicated. 

Fortunately, they can be well approximated using the delta method (Oehlert, 

1992; Kolen & Brennan, 2004). This method approximates the transformations of 

random variables using a first-order Taylor approximation and then taking its variance. 

If G is a transformation function where X is a p-dimensional random vector with 

a mean m and G( ) is differentiable, then the transformation of X to a q-dimensional 

random vector Y is  

𝐘 = 𝐺(𝐗) ≈ 𝐺(𝐦) + 𝐺′(𝐦) ∙ (𝐗 −𝐦). 

Calculating the expected value and the variance of Y based on this approximation 

yields  

𝐸(𝐘) ≈ 𝐺(𝐸(𝐗)) = 𝐺(𝐦) 

and 

 𝑉𝑎𝑟(𝐘) ≈ 𝐺′(E(𝐗)) 𝑉𝑎𝑟(𝐗) 𝐺′(E(X))
t
= 𝐺′(m) 𝑉𝑎𝑟(𝐗) 𝐺′(m)t 

where 𝐺′denotes𝑞 × 𝑝-matrix of partial derivatives, 𝑉𝑎𝑟() is the variance-covariance 

matrix, and the subscript “t” denotes the transpose of the matrix. 

In our case, our vector X is composed of the parameters of the logistic regression, 

and as they are fixed values, the expected value of X is 
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𝐸(𝐗) = 𝐦 = (
𝐴
𝐵
). 

The transformation function takes us from the LR parameters A and B to the IRT 

parameters a and b, and is given by  

 𝐸(𝐘) = (
𝑎
𝑏
) ≈ 𝐺(𝐸(𝐗)) = 𝐺(𝐦) = 𝐺 (

𝐴
𝐵
) = (

𝐴
−𝐵/𝐴

) 

as was described above. The variance-covariance matrix Var(X) is simply that of the 

logistic regression and is denoted by 

 𝑉𝑎𝑟(𝐗) = (
𝜎𝐴
2 𝜎𝐴𝐵

𝜎𝐴𝐵 𝜎𝐵
2 ). 

Finally, the matrix of partial derivatives is given by 

 𝐺′(𝐦) = (

𝜕𝐺(𝐴)

𝜕𝐴

𝜕𝐺(𝐴)

𝜕𝐵
𝜕𝐺(𝐵)

𝜕𝐴

𝜕𝐺(𝐵)

𝜕𝐵

) = (

𝜕

𝜕𝐴
(𝐴)

𝜕

𝜕𝐵
(𝐴)

𝜕

𝜕𝐴
(−𝐵 𝐴⁄ )

𝜕

𝜕𝐵
(−𝐵 𝐴⁄ )

) = (
1 0

𝐵 𝐴2⁄ −1 𝐴⁄
). 

Therefore, the variance-covariance matrix associated with the transformation of logistic 

regression parameters to the IRT scale, is  

𝑉𝑎𝑟(𝐘) = (
𝜎𝑎
2 𝜎𝑎𝑏

𝜎𝑎𝑏 𝜎𝑏
2 ) ≈ 𝐺′(m) 𝑉𝑎𝑟(𝐗) 𝐺′(m)t 

= (
1 0

𝐵 𝐴2⁄ −1 𝐴⁄
)(

𝜎𝐴
2 𝜎𝐴𝐵

𝜎𝐴𝐵 𝜎𝐵
2 ) (

1 𝐵 𝐴2⁄

0 −1 𝐴⁄
) 

with the standard errors of the discrimination parameter a and difficulty parameter b 

being given by the diagonal elements 𝑆𝐸(𝐘) = √𝑉𝑎𝑟(𝐘). 

For example, if the parameters estimated by a logistic regression are A = 0.7784 

and B = 0.5779, then 

 𝐸(𝐘) = (
𝑎
𝑏
) ≈ 𝐺(𝐸(𝐗)) = 𝐺(𝐦) = 𝐺 (

0.7784
0.5779

) = (
0.7784

−0.7784/0.5779
) 

and thus a = 0.7784 and b = −0.7424. If the variance-covariance matrix for these 

parameters is 

 𝑉𝑎𝑟(𝐗) = (
𝜎𝐴
2 𝜎𝐴𝐵

𝜎𝐴𝐵 𝜎𝐵
2 ) = (

0.0077 0.0023
0.0023 0.0063

) 

then, the matrix of partial derivatives is 
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 𝐺′(𝐦) = (
1 0

𝐵 𝐴2⁄ −1 𝐴⁄
) = (

1 0
0.9538 −1.2847

) 

and the variance-covariance matrix for the IRT parameterization is 

 𝑉𝑎𝑟(𝐘) = (
𝜎𝑎
2 𝜎𝑎𝑏

𝜎𝑎𝑏 𝜎𝑏
2 ) ≈ 𝐺′(m) 𝑉𝑎𝑟(𝐗) 𝐺′(m)t 

= (
1 0

0.9538 −1.2847
) (

0.0077 0.0023
0.0023 0.0063

) (
1 0.9538
0 −1.2847

) 

= (
0.0077 0.0044
0.0044 0.0118

). 

Finally, the standard errors for a and b are given by 𝜎𝑎 = √0.0077 = 0.0877 and 

 𝜎𝑏 = √0.0118 = 0.1086. 
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Appendix 5.4: Deriving linking constants 

Pairwise linking constants 

When the same set of items has been calibrated using item response theory with 

two different groups of examinees, the resulting scales are linearly related (Kolen & 

Brennan, 2004). That is, we can find linking constants (i.e., a slope and an intercept) 

that can transform the measures of student ability and the item parameters from one 

scale into another. If we let S denote the grade of scale that one is starting with and T as 

the target grade of the transformation, then transformation from the grade S scale to the 

grade T scale is given by 

 𝜃𝑇𝑖 = 𝛾𝑆𝑇𝜃𝑆𝑖 + 𝛿𝑆𝑇 

where for an individual i, 𝜃𝑆𝑖  is the grade S ability scale, 𝜃𝑇𝑖 is the grade T ability scale, 

and 𝛾𝑆𝑇and𝛿𝑆𝑇 are the slope and intercept of the linear function. The transformations of 

parameters from the grade S scale to the grade T scale for the j-th item, 𝑗 = 1,⋯ , 𝐽, are 

given by 

 𝑎𝑇𝑗 =
𝑎𝑆𝑗

𝛾𝑆𝑇⁄  

and  

 𝑏𝑇𝑖 = 𝛾𝑆𝑇𝑏𝑆𝑖 + 𝛿𝑆𝑇 

for the item discrimination and item difficulty parameters respectively. Finally, if we 

look at the entire set of J linking items, then the slope and intercept of the linear 

transformation can be estimated using the sample means and variances of the item 

parameters 

 𝛾𝑆𝑇 =
𝜇(𝑎𝑆)

𝜇(𝑎𝑇)
⁄  

and 

 𝛿𝑆𝑇 = 𝜇(𝑏𝑇) − 𝛾𝑆𝑇𝜇(𝑏𝑆). 

Compositing linking constants 

The linking constants described above were calculated for the pairwise grade 

levels. Now each of these linking constants are the slopes and the intercepts of a linear 
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transformation. Thus, we can denote the linear function that transforms the scale from 

grade S to the scale of grade T as 𝑓: 𝜃𝑠 → 𝜃𝑇  where 𝜃𝑇 = 𝑓(𝜃𝑆) = 𝛾𝑆𝑇𝜃𝑆 + 𝛿𝑆𝑇. 

Now, suppose we have a second linear transformation from grade R scale to 

grade S scale given by 𝑔: 𝜃𝑅 → 𝜃𝑆, where𝜃𝑆 = 𝑔(𝜃𝑅) = 𝛾𝑅𝑆𝜃𝑅 + 𝛿𝑅𝑆. Then the 

transformation from the grade R scale to the grade T scale is given by the composition of 

the functions g and f or  

 𝜃𝑇 = 𝑓(𝜃𝑆) = 𝑓(𝑔(𝜃𝑅)) = 𝑓(𝛾𝑅𝑆𝜃𝑅 + 𝛿𝑅𝑆) = 𝛾𝑆𝑇(𝛾𝑅𝑆𝜃𝑅 + 𝛿𝑅𝑆) + 𝛿𝑆𝑇 

= 𝛾𝑆𝑇 ∙ 𝛾𝑅𝑆𝜃𝑅 + 𝛾𝑆𝑇 ∙ 𝛿𝑅𝑆 + 𝛿𝑆𝑇 

If we let 𝛾𝑅𝑇 = 𝛾𝑆𝑇 ∙ 𝛾𝑅𝑆 and 𝛿𝑅𝑇 = 𝛾𝑆𝑇 ∙ 𝛿𝑅𝑆 + 𝛿𝑆𝑇 then we have that 𝑔 ∘ 𝑓:𝑔: 𝜃𝑅 → 𝜃𝑇  is 

given by 𝜃𝑇 = 𝑓(𝑔(𝜃𝑅)) = 𝛾𝑅𝑇𝜃𝑅 + 𝛿𝑅𝑇. 

We can use this process to start at any grade level and step by step, taking the 

composites of the transformation functions using the pairwise linking constants, derive 

the linking constants needed to place each of the grades on the scale of a given anchor 

grade to create a vertical scale. 
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Introduction to Norming 

A norm-referenced interpretive framework is used when inferences regarding a 

student’s test score are made by comparing their score to the distribution of scores in a 

relevant group (Kolen, 2006; Nitko & Brookhart, 2011). Istation has used such an 

interpretive framework for its tests have since their inception. As explained in the 

original technical report for ISIP Math:  

… (W)e are interested in comparing students to a national sample of 

students who have taken the ISIP Math test. We are also interested in 

knowing what the expected growth of a given student is over time, and in 

administering our test regularly to students to determine how they are 

performing relative to this expected growth. (Istation, 2018, pp. 5–1) 

Three kinds of norm-referenced scores are reported for ISIP Math, namely, 

percentile ranks (PRs), levels, and instructional tier goals. The percentile rank shows the 

percentage of students in the norm group that were lower than a given scale score for a 

given test grade level and time of year. The percentiles are used in turn to define five 

broad levels of student performance based on the quintiles of the distribution. That is, 

the cut scores at the 20th, 40th, 60th, and 80th percentiles are used to define Level 1 

through Level 5, which denote increasingly higher student performance. The 

instructional tier goals are a three-level grouping based on cut scores that are used to 

help teachers determine the level of instruction for each student. Students whose test 

scores are below the 20th percentile are said to be in Tier 3 and are at significant risk of 

not meeting grade-level expectations. Students whose test scores are in Tier 2 (between 

the 20th and 40th percentiles) are said to be at some risk of not meeting grade-level 

expectations. Finally, students with test scores above the 60th percentile (Tier 1) are 

said to be on track to meet grade-level expectations. 

The data for developing the original norms were collected from ISIP Math test 

users from grades prekindergarten through 8 during the 2011–2015 school years 

(Istation, 2018). The norms were based on students’ IRT-based scale scores, and 

Chapter 6: Norming 
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separate sets of norms were developed by time of year (beginning, middle, or end of the 

school year) for each grade. 

However, since the initial ISIP Math norming, there have been changes in both 

the population of students taking the tests and the tests themselves. More students from 

more states are now taking ISIP Math than when the assessment was first introduced. In 

addition, as described in chapter 4, the mathematics item pool has been updated to 

identify math domains that were comparable across different grades, review the 

alignment of these items with current standards, and determine which items were 

aligned with the domains. 

In light of these changes, and in order to maintain the relevance of the 

interpretative framework for ISIP Math test scores, Istation decided to develop new 

norms. The remainder of this chapter describes the processes that were used to do this. 

First, the procedures used in developing the samples of student data that were 

needed to create the norms are described. These procedures include sampling ISIP 

Math student test data and using a post-stratification index to construct a nationally 

representative sample that characterizes public school students in the US. The 

development of sampling targets, the selection of the samples of students needed, and a 

brief discussion of the post-stratification results are also presented. 

This is followed by the procedures used to develop the overall- and domain-score 

norms. The specific norm sets that were developed for ISIP Math are shown along with 

the steps that were used in cleaning the norming sample. This is followed by an outline 

of the main stages of the continuous norming process that was used: examining the 

empirical scale score distributions, selecting a family of statistical distributions to model 

the empirical distributions, modeling the distributional parameters as a function of time 

of year, and how the results were reviewed. 

Sampling Procedures 

One of the major goals in this revision was to construct a sample that closely 

represents students in public schools. To conduct the norms update, we derived a 

sample from the extensive Istation user database. ISIP Math is administered to students 

across the US, but these students may not be a representative sample of students across 

the US based on the districts and schools that subscribe to ISIP Math. Therefore, we 

constructed a nationally representative sample using post-stratification methods. 
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Post stratification can reduce bias in sampling as long as the stratification 

variables have a relationship with the population and its characteristics (Jagers, 1986). 

Therefore, the post stratification variables used to compose the normative sample must 

have a relationship with student achievement. Decades of research in education show 

that socioeconomic status at either the student or the school level predicts substantial 

variance in student achievement as measured by test scores. Istation does not require 

that our users provide student-level demographic information regarding gender, 

race/ethnicity, or economic status. Approximately half of the students have missing data 

in these areas. Because of incomplete data at the student level, we relied on the school-

level characteristics to conduct post stratification. 

The post stratification of the sample was completed in a series of steps. First, we 

created a post-stratification index to simplify the process. Second, we created 

population targets based on enrollment information from the National Center for 

Education Statistics. Third, we selected eligible student observations based on patterns 

of missing or non-missing data by month. Fourth, we randomly selected from the 

eligible students within each stratum to construct the final sample. 
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Post-Stratification Index 

To construct the post-stratification index, we relied on research regarding the 

school challenge index, designed by researchers at the Northwest Evaluation Association 

(NWEA) and based on the similar schools index in California (Thum & Hauser, 2015). 

The original school challenge index was created to encompass the known 

sociodemographic characteristics that contribute to differences in school-level student 

achievement. We modified the index to include variables that helped to account for 

unique characteristics of the Istation database. 

The school-level variables we used in the index were selected because of their 

importance and established relationship with student achievement. We also included 

the region of the country as this may impact student achievement based on local funding 

and policy. Istation also has several schools that are under the Bureau of Indian 

Education (BIE), so we also included this variable in the index. 

We constructed the index from school-level information available in the National 

Center for Education Statistics’ Common Core of Data in the Public School Universe 

(NCES-CCD-PSU). We created continuous variables based on population rates for 

socioeconomic disadvantage and race/ethnicity. These variables are explained in Table 

6.1. 

The first step in this process was to collect the data from NCES. We used the most 

recent year available, which was the 2017–2018 school year (U.S. Department of 

Education, 2018). We obtained the data for public schools, public charter schools, and 

BIE schools. We compared the NCES list of schools with schools in the Istation 

database. There were a few public schools that were in Istation but not in NCES. We 

added these schools to the NCES list with any known information such as region and 

school district. 

Since the NCES information is based on administrative data, there were 

observations with missing values in addition to the schools that were present in Istation 

but missing from NCES. To account for missing data, we imputed the values using 

predicted means matching in R statistical software. Predicted means matching is a 

regression-based method that imputes a value based on known values in the data set. 

We imputed five different values for the missing values. The final data set had 99,786 

unique schools. 
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Variable Description 

Free or Reduced-Priced Lunch (FRPL) Percentage of students eligible for free or reduced-priced 
lunch 

Percent White Percentage of students who are non-Hispanic White 

Percent Black or  
African American 

Percentage of students who are non-Hispanic Black or 
African American 

Percent Hispanic Percent of students who are of Hispanic origin of any race 

Teacher Total number of full-time teachers 

Teacher-Pupil Ratio Ratio of teachers per student 

Locale of school 
Whether the school is located in a rural, urban, or suburban 
area. Towns were divided between suburban and rural 
areas. 

Bureau of Indian Education School School is a BIE school or a tribally controlled school. 

Magnet School is a magnet school. 

Charter School is a charter school. 

School Level 
School is an elementary, middle, high, or multi-grade 
school. 

Type of School School is a regular, special education, or vocational school. 

Region of the Country Which census region the school is located in (Northeast, 
South, West, Midwest) 

Title I Eligibility Whether or not the school is eligible for Title I funds 

Title I Type of Program 
If eligible, the type of program the school implements, 
partial or school-wide 

The next step consisted of transforming the continuous variables. Since 

sociodemographic rates are not normally distributed, we transformed them into logit 

units. The categorical variables were transformed into dummy variables. These variables 

were then put into a regression model with the percentage of students receiving free or 

reduced-priced lunch (FRPL) as the dependent variable. The results from the regression 

model are in Table 6.2. 

  

Table 6.1. Information from NCES Enrollment Data Used in Construction of the Composite Index 
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Variable (N = 99,786) Coefficient SE Beta t p 

Intercept 
-3.55 0.03   -104.22 0.00 

Percent White 
-0.23 0.00 -0.17 -45.68 0.00 

Percent Black/African American 
0.02 0.00 0.01 4.23 0.00 

Percent Hispanic/Latino 
0.10 0.00 0.11 31.88 0.00 

FTE Teachers 
0.15 0.00 0.14 42.73 0.00 

Teacher-Student Ratio 
0.21 0.00 0.14 47.13 0.00 

Locale (REF = Urban) 
- - - - - 

 Suburban 
0.05 0.01 0.01 3.05 0.00 

 Rural 
0.51 0.02 0.13 29.64 0.00 

Type of School (REF = Elementary) 
- - - - - 

 Middle Schools 
-0.02 0.02 0.00 -1.33 0.18 

 High Schools 
-0.12 0.02 -0.02 -7.52 0.00 

 Multi Grade Schools 
-0.05 0.02 -0.01 -2.93 0.00 

Region (REF = South) 
- - - - - 

 Northeast 
-0.44 0.02 -0.08 -24.89 0.00 

 Midwest 
0.06 0.02 0.01 3.93 0.00 

 West 
0.04 0.02 0.01 2.42 0.02 

Title I Eligibility 
0.93 0.02 0.21 61.63 0.00 

Title I Program (REF = Partial) 
0.12 0.02 0.03 8.27 0.00 

BIE School 
0.59 0.14 0.01 4.34 0.00 

Charter 
-0.50 0.02 -0.07 -22.37 0.00 

Magnet 
0.16 0.03 0.02 5.30 0.00 

Regular 
0.36 0.02 0.05 15.18 0.00 

Using the predicted value for the outcome measure, we rescaled them to create a normal 

curve equivalent. 

𝑆𝑐ℎ𝑜𝑜𝑙𝐼𝑛𝑑𝑒𝑥 = 50 + 21.06[(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑒𝑎𝑛)/𝑆𝐷] 

Next, the school index (SI) was divided into eighths of the distribution, or octiles. 

A low value indicated schools with greater challenges due to sociodemographics and 

locale, and a high value indicated schools with fewer challenges. Since the regression 

model showed that the middle school level was not significantly different than 

elementary schools, we did not run separate regression models based on type of school. 

We divided the indexes into eight equal parts, with 12,473 schools represented in each 

octile. The mean ISIP Math score increased by each octile with a few exceptions, 

Table 6.2. Results from the Regression Model for Constructing the School Stratification Index 
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indicating that the variable worked to account for achievement at the school level. Table 

6.3 shows the mean ISIP Math score, using the original ISIP Math scale for the middle-

of-the-year scores, across grades and SI octile levels. 

Grade SI1 SI 2 SI 3 SI 4 SI 5 SI 6 SI 7 SI 8 

Pre-K 2037 2064 2083 2077 2077 2122 2053 2079 

K 2060 2079 2100 2123 2127 2168 2192 2166 

1 2034 2070 2096 2106 2131 2171 2191 2155 

2 1974 2001 2011 2019 2035 2064 2077 2103 

3 1928 1944 1955 1958 1968 2007 2021 2039 

4 1967 1988 1972 1999 2015 2063 2041 2080 

5 1954 1957 1983 1987 2007 2063 2076 2099 

6 2001 1997 1961 2008 2043 1990 2028 2058 

7 1989 1971 2016 1982 1998 1959 1991 2134 

8 2025 1968 1995 1949 2017 1928 2017 2086 

  

Table 6.3. Means of Midyear Original ISIP Math Scores by Grade and School Index Octile Levels 
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Sample Targets and Selection 

We then computed sampling targets using the enrollment data for elementary 

and middle schools. We created the targets based on type of school because we were 

relying on administrative data, which can fluctuate by year, and thus using an aggregate 

across grades is preferred. We computed the targets separately by school level, as there 

are fewer middle schools than there are elementary schools. Sixth grade was considered 

to be in middle school. We compared the targets to the enrollment in the Istation Math 

program and determined that our database tended to skew to the lower octiles, 

indicating the need for post stratification. 

Selecting eligible student observations 

We used two separate norming years for the overall score and the domain scores. 

The 2019-2020 school year was disrupted by the COVID-19 pandemic, so we used the 

2018–2019 school year as the base norming year for the overall score. This school year 

was not selected for the domain scores due to changes implemented in the assessment. 

Prior to the 2019–2020 school year, students received approximately 20 items per 

assessment, and the selection was only based on the difficulty of the item, not the 

particular domain. In 2019–2020, we began administering an equal number of items 

per domain to collect data for norming domain scores. This was the only year data was 

available for domain scores. We calibrated the performance of the two years, which is 

described below. 

Overall Score Sample. Since ISIP Math can be used for progress monitoring and 

benchmarking, selecting only those observations with complete data can bias the 

sample. In addition, the benchmarking month can vary by school district or state. 

Istation divides instructional months depending on the first day of school, and the first 

month is considered Period 0. Subsequent months are numbered sequentially. We 

evaluated the monthly number of ISIP Math scores and noticed that the majority of 

students assessed monthly, with some peaks in Periods 1, 5, 8, and 9. Benchmarking 

patterns were observed in Periods 0, 5, and 9; Periods 1, 5, and 8; and Periods 1, 5, and 

9. Student observations were selected as eligible for norming if they had scores in the 

benchmark months or if they had scores in five or more periods. Student observations 

that did not have all eligible benchmark months or less than five periods were 

determined as ineligible for selection. This reduced the number of eligible observations. 

Next, after creating the sample targets for each SI, we conducted sampling by 

grade. Sampling was conducted without replacement for the lower grades (pre-K–3) and 
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with replacement in grades 4-8. While the targets were set for public school enrollment, 

which is the majority of Istation users, we also included some observations from private 

or parochial schools, approximately 1%. The exception was prekindergarten, where 15% 

of the sample came from private or parochial schools. 

Domain Score Sample. The same process was used for the sample for the domain 

scores; however, we used data from the 2019–2020 school year that had scores available 

in the first two benchmark months and scores in March before the schools closed. The 

2019–2020 school year was the only year for which data were available to compute the 

domain scores. Most students received approximately 20 items, or 5 items per domain. 

Some students, however, received fewer items. These students were included in the data 

set because the CAT algorithm had converged with fewer items, and eliminating these 

students may have biased the sample. 

Sample calibration. Since the domain scores and the overall scores come from 

two different norming years, it was important to calibrate the sample so that they were 

equivalent on ability. We used the middle-of-the-year (MOY) overall score from the 

domain score file, and when the sample for the overall score was selected, the selection 

was weighted so that the samples were equivalent on their math ability for MOY. This 

was done using code in R statistical software that was developed internally for sample 

selection. 

Final Sample Description 

Table 6.4 shows the percent of observations from each SI and the sample targets 

based on the NCES enrollment in each type of school. 
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Grade 
Span 

Targets 
and 
Actuals  

SI 1  SI 2  SI 3  SI 4  SI 5  SI 6  SI 7  SI 8  Private/ 
Parochial 
School  

Pre-K 
to 5 

 

NCES 
Target 

19.0% 16.7% 14.5% 11.7% 10.5% 10.6% 12.0% 5.2% n/a 

Pre-K 
to 5 

 

Overall 
Score 
Sample 
(N = 
61,500) 

19.0% 16.6% 14.4% 11.6% 10.2% 10.5% 11.8% 4.6% 1.3% 

Pre-K 
to 5 

 

Domain 
Score 
Sample 
(N = 
61,500) 

19.0% 16.6% 14.4% 11.6% 10.2% 10.3% 11.6% 4.9% 1.4% 

6 — 8 

 

NCES 
Target 

17.9% 14.2% 12.7% 10.8% 10.6% 13.9% 14.6% 5.3% n/a 

6 — 8 

 

Overall 
Score 
Sample 
(N = 
10,000) 

18.4% 15.5% 13.6% 11.2% 10.4% 12.0% 13.0% 5.1% 1.0% 

6 — 8 

 

Domain 
Score 
Sample 
(N = 
10,106) 

17.5% 14.0% 12.5% 10.5% 10.4% 13.6% 14.3% 5.2% 2.0% 

Source for NCES Targets: U.S. Department of Education, Institute of Education Sciences, National Center 

for Education Statistics, Common Core of Data 2017-2018. 

The total final sample for the overall and domain score samples consisted of 

71,500 and 71,506 students respectively, of which about 10.8% had been resampled. 

The NCES targets show the distribution by SI, which is for public schools. The sample 

closely matches the NCES targets; however, it varies slightly as we added some 

observations from private and parochial schools. 

  

Table 6.4. Percent of Public School Students by School Index Octile and of Private/Parochial 
School Students in Overall- and Domain-Score Samples 
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Norming Analysis 

Initial Considerations and Data Preparation 

As described in chapter 4, ISIP Math produces a scale score that describes overall 

student performance in mathematics. In addition, the assessment is also designed to 

produce domain scores in four areas for grades prekindergarten through 5 and a 

separate set of domain scores in four areas for grades 6 through 8. In all, 50 sets of 

norms needed to be developed for the assessment, and these are summarized by grade 

and domain in Table 6.5. 

Grade Overall 
Comp. & 

Alg. 
Think. 

Num. 
Sense 

Num. 
System 

Meas. & 
Data 

Analysis 

Stats. & 
Data 

Analysis 
Geom. 

Geom. & 
Meas. 

Pre-K Yes Yes  Yes  No Yes  No  Yes  No  
K Yes  Yes  Yes  No  Yes  No  Yes  No  
1 Yes  Yes  Yes  No  Yes  No  Yes  No  
2 Yes  Yes  Yes  No  Yes  No  Yes  No  
3 Yes  Yes  Yes  No  Yes  No  Yes  No  
4 Yes  Yes  Yes  No  Yes  No  Yes  No  
5 Yes  Yes  Yes  No  Yes  No  Yes  No  
6 Yes  Yes  No  Yes  No  Yes  No  Yes  
7 Yes  Yes  No  Yes  No  Yes  No  Yes  
8 Yes  Yes  No  Yes  No  Yes  No  Yes  

Table 6.5. ISIP Math Norms Developed by Grade and Domain 
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The data collected in the study were broken up into grade-specific files based on 

overall- and domain-score samples respectively. The norms for the overall scale scores 

were developed first on a grade-by-grade basis and then were followed by analyses for 

each of the mathematics domains. 

The files for the overall-score samples included fields showing the following: 

• unique student identifier 

• grade 

• unique identifier for the student’s school 

• octile of the school index used to post-stratify schools 

• student’s ISIP Math overall CAT scale score 

• scale score standard error 

• overall performance level 

The final three fields were repeated for each test administration period for which 

a given student had ISIP Math data. The administration periods were denoted using 

Table 6.6, so a field denoted score_overall_5, for example, indicates the overall CAT 

score for a student taking the test in the fifth month of the school year. Istation sets 

Period 0 as the initial month of school followed by Periods 1 through 9 sequentially. 

Depending on the school start date, Period 1 is usually September, Period 2 is October, 

and so on. Schools that start in July would have a different calendar month for their 

administration period. The most common test administration periods are below in Table 

6.6. However, the sample did not constrain the calendar month and period month; 

therefore, the data for Period 1 may have some assessments from August or October, 

and Period 5 may have some assessments from December, depending on the day school 

started in a given district or school. 
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Period Time of Year  

0 August 

1 September 

2 October 

3 November 

4 December 

5 January 

6 February 

7 March 

8 April 

9 May 

The domain-score sample files included similar fields but were much more 

extensive, as the set of three fields used to denote student achievement needed to be 

repeated for each domain and test administration period taken by the student. Once the 

files were uploaded, the data preparation steps included checking all variables for out-

of-bound and missing values and removing any duplicate student cases or cases with 

completely missing item response strings. 

This was followed by calculating summary measures to describe the distribution 

of student scale scores for each combination of grade, period, and norm set needed in 

the analysis. These statistics included the following: 

• the number of cases, mean, standard deviation, skewness, and kurtosis; 

• the minimum and maximum scale scores observed; and  

• the values of key percentiles, including the 1st, 5th, 10th, 20th, 25th, 40th, 50th, 

60th, 75th, 80th, 90th, 95th, and 99th percentiles. 

The percentiles were selected to provide information regarding the tails of the 

distribution, the median, the interquartile range, and the cut scores that are used by 

ISIP Math to report students’ performance levels and instructional tier goals. 

Norming Approach 

ISIP Math requires normative information to be developed for each period of the 

school year. In traditional approaches to norming, demographic variables such as the 

time of year that a student took a test would be treated as a discrete variable. The 

students sampled at each of the times would then represent different subgroups that 

required separate norms be estimated. 

Table 6.6. ISIP Math Test Administration Periods 
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However, this approach ignores the fact that variables such as time of year and 

age are actually continuous in nature. By using models that treat time period as a 

continuous variable to predict test scores, one can use information taken from across 

the entire year to estimate norms. This approach, called parametric continuous 

norming, was used to develop the new norms for ISIP Math (Zhu & Chen, 2011; 

Voncken et al., 2019; Lenhard et al., 2018). 

As described by Lenhard et al. (2019) in the context of raw-score-based age 

norms, “(k)nown parametric functions are used to model the raw score distributions at 

specific age levels. The function parameters are subsequently modeled as a function of 

explanatory variables such as age” (p. 5, Fig. 2). 

In developing the ISIP Math norms, this approach was modified to substitute 

overall/domain scale scales for raw scores and within-grade, time-of-year periods for 

ages. For each grade and set of overall or domain scale scores, the process consisted of 

the stages outlined in the next section. 

Examination of Empirical Scale Score Distributions 

The empirical scale score distributions were examined across the time-of-year 

periods. We used descriptive statistics and boxplots, histograms, and scatterplots to 

assess the family of statistical distributions that would most reasonably model the 

observed scale score distributions. 

Although some of the score distributions appeared to be approximately normal, 

in most cases, the distributions showed a great deal of skewness — which often changed 

throughout the school year. An example of the skewed nature of the scaled score 

distributions can be seen for the first-grade overall scale scores. Table 6.7 shows the 

descriptive statistics for these data, while Figures 6.1 and 6.2 show the boxplots and 

histograms. 

The descriptive statistics clearly show the change in the skewness across the year, 

as does the change in the placement of the median line with respect to the lower and 

upper quartiles in the boxplots. The boxplots also show that most of the outliers for 

periods at the beginning of the year are for high scale score values (positive skew), more 

evenly divided towards the middle of the year (approaching symmetry), and low scale 

score values at the end of year (negative skew). The change in the skewness across the 

year can be best seen in histograms. Each histogram has been fitted with a normal 

distribution based on the mean and standard deviation of the scale score distribution for 

that period and highlights the departure of the empirical distribution from normality. 
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Due to the skewness of most of the scale score distributions, the more flexible 

beta distribution was used as the parametric function to model the distributional shapes 

rather than the normal distribution. The beta distribution is given by the probability 

density function 

𝑓(𝑥; 𝛼, 𝛽) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1 

where 𝛼 > 0and𝛽 > 0 are parameters governing the shape of the density function, Γ(∙) 

is the gamma function, and 0 ≤ 𝑥 ≤ 1. 

 

Period N Mean SD Skewness  Kurtosis  

0 2,425 403.6 58.1 0.59 0.10 

1 9,909 408.5 60.2 0.46 0.17 

2 9,915 421.8 60.3 0.29 0.11 

3 9,919 436.6 61.9 0.21 0.15 

4 9,939 447.2 62.8 0.14 0.11 

5 9,951 454.9 64.9 0.10 0.19 

6 9,959 464.5 66.5 0.04 0.13 

7 9,945 476.7 67.8 -0.06 0.09 

8 4,370 506.5 65.9 -0.19 0.02 

9 3,284 511.6 68.7 -0.28 -0.09 

Table 6.7. ISIP Math Grade 1 Normative Sample: Overall Scale Score Descriptive Statistics by 

Time of Year 
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Figure 6.1. Example: ISIP Math Grade 1 Normative Sample: Boxplots by Time of Year 
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Figure 6.2. Example ISIP Math Grade 1 Normative Sample: Histograms of Scaled Scores 
by Time of Year with Normal Distribution Overlay 
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Modeling the Distributional Parameters 

After choosing to use the beta distribution to model the shape of the empirical 

scale score distributions, the next step involved modeling its shape parameters as a 

function of the time of year. 

First, polynomial regression was used to fit selected percentiles from the 

empirical scale score distribution as a function of the time of year. These smoothed 

percentiles were then used to estimate the parameters of the beta distribution using R 

(R Core Team, 2018) for the analysis and the function beta.parms.from.quantiles 

(Blisle, 2017).7 

One of the issues encountered at this stage involved using 3rd or 4th degree 

polynomial functions; although they produced closer fits to the empirical scale scores, 

they oftentimes resulted in the smoothed “bowing” or “reversing” across the time-of-

year periods. That is, it was possible that students at a given scale score and percentile 

rank at midyear could find themselves scoring at a higher percentile rank for the same 

scale score at the end of the year. In order to meet substantive expectations of growth 

across the year, 2nd degree polynomial functions (parabolas) were used to constrain the 

growth to be monotonic, non-decreasing scale score values. 

Generating and Reviewing the Percentiles for the New Norms 

Once these parameters were estimated for a given period, they were used to 

generate for each percentile rank of the theoretical distribution (i.e., from 1 to 99) the 

corresponding scale score percentiles that would be used as norms. The final scale score 

percentiles for the new norms were rounded to the nearest whole numbers on the 100 to 

900 ISIP Math reporting scale. 

 
7 As a technical point, It should be noted that the beta distribution only takes on values from 0 to 

1. Thus, all of the smoothed percentiles on the ISIP Math scale needed to be rescaled from 100 to 900 to 
the 0 to 1 metric so that they could be used to estimate the parameters for the beta distribution. The final 
results were then scaled back to the original reporting scale. 
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The norms that were produced were reviewed to assess their reasonableness by 

examining scatterplots of the smoothed scaled score values, comparing the newly 

produced norms with the current norms and applying the current and new norms to 

current and previous years’ student data. Additional checks examined the percentages of 

students that fell into the ISIP Math levels and instructional tiers under the current 

norms versus the new norms. 

A major goal of this renorming effort was to update the norms and make them 

more rigorous than the previous norms. To evaluate whether we met this goal, we 

obtained data from an urban school district in Ohio that had used Istation and ISIP 

Math for several years and compared the students’ performance on the ISIP Math and 

the Ohio AIR. The sample consisted of approximately 1,900 students in grades 3 

through 8. The Ohio AIR is administered yearly to students in the state, who were then 

given a proficiency rating of limited, basic, proficient, accelerated, or advanced. We used 

data from the 2018 – 2019 school year, the same year that was used for norming 

purposes. We set a cut point at the proficient level or above and evaluated the 

percentage of students who scored in Tier 1 in the middle of the year using both the 

previous and updated norms to determine if the updated norms were better able to 

identify students at risk of not scoring proficient or higher. The second column in Table 

6.8 shows the percent of students in the state who passed the Ohio AIR (Ohio 

Department of Education, 2019). The third column shows the percent of students in our 

data who scored at Tier 1 or higher under the previous norms, and fourth column shows 

those who scored at Tier 1 or higher in the updated norms. 
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Grade % Passing Ohio AIR  
2018-2019 SY 

Previous Norms:  
Tier 1 students who 
scored Proficient  or 

above 

Updated Norms:  
Tier 1 students who 
scored Proficient  or 

above 
3 67.1% 57.9% 83.8% 
4 74.3% 66.9% 76.2% 
5 65.0% 51.4% 78.9% 
6 60.1% 40.8% 57.1% 
7 57.5% 37.7% 72.3% 
8 57.3% 27.9% 54.5% 

Using the tier system, under the previous norms, 57.9% of students scoring in 

Tier 1 in third grade also reached the proficient level or above on the Ohio AIR; 

however, with the updated norms, 83.8% reached the proficient level or above. In fourth 

grade, 74.3% of students in the state reached proficiency, and under the previous norms 

66.9% of students reached the proficient level or above, while in the updated norms, 

76.2% reached proficient or above. Similar patterns are apparent across grades 5 

through 8. The updated norms appear to better identify students who may be at risk of 

not reaching the proficient or above status, indicating that we met the goal of having 

more rigorous norms. 

  

Table 6.8. Comparison of Ohio AIR Proficiency Rates, and the Percent of Students Who Reached 
Tier 1 in the Previous and Updated Norms and Met the Proficient Level or Higher 
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During the initial development of the ISIP Math assessment, studies for test-

retest reliability and concurrent and predictive validity work were conducted. We 

compared ISIP Math scores to scores from norm-referenced measures with good 

psychometric properties of similar constructs. ISIP Math scores were compared to STAR 

Math™, the Test of Early Mathematics Ability-Third Edition (TEMA-3), the Stanford 

Achievement Test – Tenth Edition (SAT10), and the State of Texas Assessments for 

Academic Readiness (STAAR). 

Internal Consistency 

Data for an internal consistency study came from three school districts in Texas. 

Students in the sample consisted of 13.8% African American, 36% Hispanic/Latino, 

42.9% White, and 4.8% Asian, and the remainder were multiple race ethnicities, 

American Indian, or Native Hawaiian/Other or Pacific Islander. Over forty seven 

percent (47.9%) were receiving free or reduced-priced lunch (FRPL), and 48.7% were 

female, and 51.3% were male. We obtained criterion-related evidence using the STAR 

Math™, TEMA-3, SAT10, and STAAR. 

STAR Math assesses a similar construct as ISIP Math and has a similar purpose. 

Therefore, it was selected to provide criterion-related evidence for ISIP Math. However, 

STAR Math was not used as a criterion assessment or benchmark. 

• Internal consistency reliabilities ranged from .90–.95 across grades, with the 

test-retest coefficient ranging from .76–.84. Predictive and concurrent 

correlations ranged from moderate to strong, with predictive correlations ranging 

from r = .63–. 80 and concurrent correlations ranging from r = .57–.68. 

The TEMA-3, which seeks to identify students significantly behind or ahead of 

peers in mathematical skills, was used as a criterion assessment for kindergarten 

through second grade students. 

• The TEMA-3 is available in two parallel forms, Form A and Form B. Research 

indicates that internal consistency reliabilities for both forms are above .92. Test-

Chapter 7: Reliability and Validity 
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retest estimates are .82 for Form A and .93 for Form B. Ginsburg and Baroody 

(2003) also found that items in Form A contained bias. Given these findings, 

Form B was selected for this study. Criterion validity coefficients ranged from r = 

.36–.71, with the majority of coefficients in the r = .50–.60 range. 

The SAT10 online math assessment, with its web-based multiple-choice format, 

was selected for this study as a criterion assessment for students in grades 3 through 

8. 

• Internal consistencies range from .80–.87. Convergent validity coefficients range 

from r = .70–.80 across grade levels. 

The STAAR is Texas’s current testing program, with the mathematics STAAR 

being a mandatory end-of-year state assessment for students in grades 3 through 8. 

The format of the STAAR is multiple-choice items. It was also used as a criterion 

assessment to support inferences made from ISIP Math for grades 3 through 8. 

• Internal consistency reliabilities for STAAR range from .81–.93 across grade 

levels. 

Validity Evidence 

Technical adequacy data were collected to document the utility of ISIP Math in 

making screening decisions for students in kindergarten through eighth grade. The 

criteria used within this study were identified by the National Center on Response to 

Intervention (NCRTI) in 2010 and include the following:  

• generalizability of the sample;  

• classification accuracy of the performance level;  

• reliability (of either the data or administrations of the assessment over time);  

• evidence for validity; and 

• evidence for reliability and validity disaggregated by relevant subgroup. 

Furthermore, the items were calibrated under a two-parameter logistic item 

response theory (2PL-IRT) model. Item parameters were examined, and those items 

with unacceptable fit statistics with regards to the domain that they measured were 

removed from the pool. Based on the combined processes used to establish content 

validity, the items in the operational pool grouped by domain are believed to be 

accurate representations of the domain that they intend to measure. 
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Generalizability 

Generalizability was analyzed to illustrate the extent to which the analytic sample 

for the study was comparable to the state and national population. Tables 7.1 — 7.3 

shows the comparison of the analytic sample to the national distribution. 

 Statewide 
Distribution a  % 

National 
Distribution b c d  % 

Sample 
Distribution % 

African American 
12.61 15.60 13.76 

Hispanic/Latino 
52.22 24.88 36.05 

American Indian/ 
Alaska Native 

.39 1.05 .42 

Asian 
4.03 5.18 4.83 

Native 
Hawaiian/Other  
or Pacific Islander 

.14 - .42 

Two or More Races 
2.05 3.02 2.23 

a Texas Education Agency (2015). 

b U.S. Department of Education, National Center for Education Statistics, Common Core of Data (2012). 

c U.S. Department of Education, National Center for Education Statistics, Common Core of Data (2015). 

d U.S. Census Bureau (2014). 
  

Table 7.1. Comparison of Demographics for Race/Ethnicity for the State, National, and 
Recruited Sample 
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Concurrent Validity 

Concurrent-related evidence for validity examines the relationship between 

performance on the screener and a criterion assessment with similar content that is 

administered at the same point in time. We conducted several validity studies and 

results are available in Table 7.4. Concurrent-related evidence for validity at each 

administration of ISIP Math was calculated by determining the correlation between the 

scaled scores of ISIP Math for that administration and the scaled scores of the STAR 

Math for the same administration by grade level.  

Table 7.2. Comparison of Demographics for Free/Reduced Priced Lunch Status for the State, 
National, and Recruited Sample 

 
Statewide 

Distributiona % 
National 

Distributionbcd % 
Sample Distribution 

% 

Yes 
50.10 48.10 47.86 

No 
49.90 51.90 52.14 

a Texas Education Agency (2015). 

b U.S. Department of Education, National Center for Education Statistics, Common Core of Data (2012). 

c U.S. Department of Education, National Center for Education Statistics, Common Core of Data (2015). 

d U.S. Census Bureau (2014). 

Table 7.3. Comparison of Demographics for Gender for the State, National, and Recruited 
Sample. 

 Statewide 
Distributiona % 

National 
Distributionbcd % 

Sample Distribution 
% 

Male 
51.30 51.40 51.29 

Female 
48.70 48.60 48.71 

a Texas Education Agency (2015). 

b U.S. Department of Education, National Center for Education Statistics, Common Core of Data (2012). 

c U.S. Department of Education, National Center for Education Statistics, Common Core of Data (2015). 

d U.S. Census Bureau (2014). 
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Table 7.4. Concurrent-Related Evidence for Validity 

Assessment n Coefficient 

STAR Math (BOY) Grade 1 208 .66 

STAR Math (BOY) Grade 2 185 .76 

STAR Math (BOY) Grade 3 170 .71 

STAR Math (BOY) Grade 4 81 .64 

STAR Math (BOY) Grade 5 224 .55 

STAR Math (BOY) Grade 6 174 .74 

STAR Math (BOY) Grade 7 222 .61 

STAR Math (BOY) Grade 8 165 .61 

STAR Math (MOY) Grade 1 212 .77 

STAR Math (MOY) Grade 2 183 .81 

STAR Math (MOY) Grade 3 169 .75 

STAR Math (MOY) Grade 4 69 .67 

STAR Math (MOY) Grade 5 198 .71 

STAR Math (MOY) Grade 6 173 .77 

STAR Math (MOY) Grade 7 199 .60 

STAR Math (MOY) Grade 8 167 .59 

STAR Math (MOY) Grade 8 167 .59 

STAR Math (EOY) Grade 1 213 .72 

STAR Math (EOY) Grade 2 181 .75 

STAR Math (EOY) Grade 3 167 .74 

STAR Math (EOY) Grade 4 81 .78 

STAR Math (EOY) Grade 5 235 .76 

STAR Math (EOY) Grade 6 162 .80 

STAR Math (EOY) Grade 7 211 .76 

STAR Math (EOY) Grade 8 145 .61 

STAR Math (EOY) Grade K 152 .49 

STAR Math (EOY) Grade 1 210 .66 

STAR Math (EOY) Grade 2 195 .69 

SAT 10 Grade 3 196 .82 

SAT 10 Grade 4 131 .82 

SAT 10 Grade 5 250 .82 

SAT 10 Grade 6 197 .83 

SAT 10 Grade 7 146 .57 

SAT 10 Grade 8 152 .67 

SAT 10 PS Grade 3 196 .82 

SAT 10 PS Grade 4 131 .82 

SAT 10 PS Grade 5 250 .75 

SAT 10 PS Grade 6 197 .83 

SAT 10 PS Grade 7 146 .45 

SAT 10 PS Grade 8 152 .65 
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SAT 10 P Grade 3 196 .69 

SAT 10 P Grade 4 131 .71 

SAT 10 P Grade 5 250 .78 

SAT 10 P Grade 6 197 .74 

SAT 10 P Grade 7 146 .58 

SAT 10 P Grade 8 152 .54 

STAAR Grade 3 190 .81 

STAAR Grade 4 129 .80 

STAAR Grade 5 241 .81 

STAAR Grade 6 234 .85 

STAAR Grade 7 192 .70 

STAAR Grade 8 130 .68 

 

It was also calculated by determining the correlation — individually by grade level 

— between the scaled scores of the EOY ISIP Math and the scaled scores of the TEMA-3, 

SAT10 complete battery and its two subtests (Problem Solving (PS) and Procedures 

(P)), and the STAAR.  

Discussion 

Reliability and validity are two important qualities of measurement data. 

Reliability can be thought of as consistency, either consistency between items within a 

testing instance or between scores from multiple testing instances. Validity can be 

thought of as accuracy, either accuracy of the content of the items or of the constructs 

being measured. In this study, both qualities were examined using ISIP Math data 

collected from kindergarten through eighth grade students at three school districts in 

Texas during the 2015-2016 school year. 

Sensitivity and Specificity 

We also conducted classification accuracy to determine the sensitivity and 

specificity for detecting students at risk. The sensitivity of ISIP Math for kindergarten 

through second grade using TEMA-3 as the criterion assessment was between .80 and 

.92. In other words, between 80% and 92% of the students who were classified as at-risk 

on the TEMA-3 were also classified as at-risk on the EOY ISIP Math. 

The specificity of ISIP Math for kindergarten through second grade using TEMA-

3 as the criterion assessment was lower, ranging between .61 and .79. In other words, 

between 61% and 79% of the students who were classified as not at-risk on the TEMA-3 
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were also classified as not at-risk on the EOY ISIP Math. This also indicates that 

between 21% and 39% of students classified as at-risk on the ISIP Math were classified 

as not at-risk on the TEMA-3. 

The positive predictive value (PPV), or precision of classification, ranges from .90 

to .97 across grades. This indicates that 90 to 97% of the students who were truly at-risk 

were classified as at-risk on both the ISIP Math and the TEMA-3. The negative 

predictive value (NPV) ranges from .29 to .70 across grades, indicating that 29 to 70% of 

students who were truly not at-risk were classified as not at-risk on both the ISIP Math 

and the TEMA-3. The NPV value coincides with the large proportion of students who 

were classified as at-risk on the EOY ISIP Math and were classified as not at-risk on the 

TEMA-3. 

The accuracy of identification ranges from .80 to .89, indicating that the number 

of students correctly classified on the EOY ISIP Math with respect to the TEMA-3 was 

between 80% and 89% across all grades. The Area Under the Curve (AUC) indices range 

from .74 to .84 across grades. Using the guidelines suggested by Kettler et al. (2014), the 

AUC indices are moderate to high. Using the guidelines set by the NCRTI (2010), 

kindergarten and second grade ISIP Math results provide partially convincing evidence 

for classification accuracy based on TEMA-3, while first grade ISIP Math provides 

unconvincing evidence for classification accuracy based on TEMA-3. 

One possible explanation for over-classification of at-risk students is that the cut 

score used for classification of at-risk and not at-risk students on the TEMA-3 is the 

20th percentile, while the cut score used for ISIP Math is the 25th percentile. Taken 

together, the evidence supports the claim that ISIP Math produces reliable and valid 

data for measuring key areas of math skills development, including number sense, 

operations, algebra, geometry, measurement, and data analysis. 

Details from the full validity study are available. To review the complete validity 

study, “Imagination Station (Istation): Istation’s Indicators of Progress (ISIP) Math 

Validity Studies – Overview of Results,” visit the following webpage and click the link 

found under the Archive Technical Reports heading. 

http://www.smu.edu/Simmons/Research/RME/Explore/Publications 

http://www.smu.edu/Simmons/Research/RME/Explore/Publications
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ISIP Math Predictive Validity 

In this ISIP Math update, we report additional evidence for validity with two 

separate studies. The first study was conducted for third grade students who were also 

assessed with the ACT Aspire, and the second study was conducted for third through 

eighth grade students who also took the Ohio AIR assessment. 

ACT Aspire 

Patarapichayatham & Locke (2020a) conducted an analysis of the ACT Aspire and the 

ISIP Math using data from the 2017-2018 and 2018-2019 school years. A full 

description of this study is available at www.istation.com/studies. This research sought 

to determine the relationship between second graders’ ISIP Math EOY scores and their 

third-grade end-of-year performance on the ACT Aspire, and between third graders’ 

ISIP Math MOY scores and their end-of-year performance on the third grade ACT 

Aspire. The ACT Aspire assessments are vertically scaled, and they are aligned with the 

standards that target college and career readiness (ACT, 2019). Previous scale scores for 

the ISIP Math were converted to the new scale using the methodology described in 

chapter 5. 

All data for this analysis came from students in Arkansas. All races/ethnicities 

are represented in the sample. The Asian/Other group consists of students who were 

Asian, Native American or Native Hawaiian, and multi racial students. A full description 

is available in Table 7.5. 

  

http://www.istation.com/studies
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Category Demographic  Math 
Grade 2 

N=8,381 

Math 
Grade 3 

N=4,774 

Gender Female 48.9% 48.7% 
Gender  Male 51.1% 51.3% 

Race/Ethnicity White 68.6% 66.9% 

Race/Ethnicity African American 12.4% 8.9% 
Race/Ethnicity Hispanic or Latino 13.3% 17.0% 
Race/Ethnicity Asian or Other 5.7% 7.2% 

Language English 88.6% 84.3% 

Language Spanish 9.9% 13.6% 

Language Other Language 1.5% 2.1% 
Language Status EL 9.7% 11.5% 

We first conducted Pearson product-moment correlations between the ISIP Math and 

the ACT Aspire. These are available in Table 7.6. Correlations are strong for both second 

grade EOY and third grade MOY scores. 

Grade ISIP Math Correlation 
with ACT Aspire  

2 .76 

3 .77 

Next, we used a multinomial logistic regression model to calculate probabilities for 

reaching Close, Ready, or Exceeding expectations. The probabilities of reaching Ready 

or above at key percentiles are available in Table 7.7. 

  

Table 7.5. Demographic Characteristics of the ACT Aspire Study 

Table 7.6. Pearson Product-Moment Correlation Coefficients between ISIP and ACT Aspire 
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Percentile 
Rank 

Grade 2 
ISIP EOY 

Probability  Grade 3 
ISIP MOY 

Probability  

20 462 .399 478 .427 
40 493 .627 505 .680 
60 520 .800 529 .858 
80 550 .922 557 .965 

Students who score in the 40th percentile or above have a greater than 60% probability 

of reaching Ready or higher. Students who score in the 60th percentile (level 4 or above) 

have an 80% probability of achieving Ready or higher. 

Classification accuracy was also calculated for third grade students. A cut point at 

the 45th percentile rank was the best differentiation for all students and by subgroups 

for race/ethnicity and gender. The sensitivity was .83, indicating that 83% of students 

who met or exceeded the 45th percentile met Ready or higher. Specificity was .81, 

meaning that 81% of the students who did not meet the threshold did not meet Ready or 

higher standards. The positive predictive power was .89, and the negative predictive 

power was .72 (Patarapichyatham & Locke, 2020a). 

Ohio AIR 

The Ohio State Board of Education adopted the Common Core State Standards 

(CCSS) in both English language arts (ELA) and mathematics as Ohio’s Learning 

Standards (Patarapichyatham & Locke, 2020b). The state of Ohio requires all students 

in grades 3 through 8 to take standardized tests in mathematics each year, and the Ohio 

Department of Education worked with Ohio educators and the American Institutes for 

Research (AIR) to develop the state assessments. Content advisory and sensitivity 

committees determined whether test items were suitable for the course, accurate, fair, 

and measured Ohio’s Learning Standards (AIR, 2019). 

The Ohio AIR performance levels are used to place students’ assessment scores in 

one of five levels of achievement: level 1 – Limited, level 2 – Basic, level 3 – Proficient, 

level 4 – Accelerated, or level 5 – Advanced. 

The sample for this study came from approximately 1,900 students in an urban 

school district in Ohio. A full description of this study is available at 

www.istation.com/studies. 

Table 7.7. Probabilities of reaching Ready or Higher on the ACT Aspire at Key Percentiles for 
3rd Grade EOY 

http://www.istation.com/studies
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Table 7.8 describes the demographics of the sample. More than 50% of the 

students were African American or Black (AA), and the remainder were White, 

Hispanic/Latino, or Others. These data were from the 2018-2019 school year, and the 

scores were converted from the previous scale to the current scale. We used MOY scores 

to calculate the proficiency projection. 

Grade N AA Hispanic/ 
Latino 

White Others Female Male EL: 
Yes 

EL: 
No 

3 337 53.9% 19.0% 17.6% 9.5% 46.3% 53.7% 3.5% 96.5% 

4 399 54.0% 17.9% 14.9% 13.2% 45.1% 54.9% 5.8% 94.2% 

5 335 55.9% 19.9% 15.5% 8.7% 44.7% 55.3% 5.1% 94.9% 

6 311 59.4% 19.3% 13.0% 8.3% 49.6% 50.4% 4.6% 95.4% 

7 290 55.7% 23.1% 14.1% 7.1% 50.9% 49.1% 4.8% 95.2% 

8 236 56.2% 26.2% 11.2% 6.4% 52.8% 47.2% 5.6% 94.4% 

Pearson product-moment correlations between ISIP Math and Ohio AIR were computed 

by grade. Correlations are available in Table 7.7. Correlations are moderate to strong 

across grades 3 through 8. 

  

Table 7.8. Demographic Characteristics of the Ohio AIR Study 
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Grade Correlation 

3 0.70 

4 0.66 

5 0.73 

6 0.76 

7 0.69 

8 0.50 

Probabilities for reaching the Proficient level or above on the Ohio AIR are 

available in Table 7.8. The table shows key percentiles that correspond to the cut points 

for the ISIP levels, their associated scores at MOY, and the probability of reaching 

Proficient or higher on the Ohio AIR. 

  

Table 7.7. Correlations Between ISIP Math and Ohio AIR 
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Grade Percentile  
Rank 

Score Probability  

3 20 474 .228 

3 40 500  .506 

3 60 523 .781 

3 80 549 .970 

4 20 491 .206 

4 40 518 .438 

4 60 540 .756 

4 80 567 .926 

5 20 504 .185 

5 40 532 .543 

5 60 555 .816 

5 80 583 .957 

6 20 512 .068 

6 40 543 .256 

6 60 568 .510 

6 80 597 .776 

7 20 518 .099 

7 40 552 .298 

7 60 579 .558 

7 80 610 .810 

8 20 527 .171 

8 40 562 .444 

8 60 591 .713 

8 80 624 .918 

  

Table 7.8. Probability of Reaching Proficient or Higher on the Ohio AIR at Key Percentiles of 
ISIP Math 
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Across grade levels, the probability of reaching Proficient or higher increases as 

the student’s percentile rank or level increases. Students in grades 3 and 5 have a 

greater than 50% probability of meeting Proficient or higher at level 2, while in the other 

grades a higher level is needed to obtain greater than a 50% probability of reaching 

Proficient. 

Student Growth Expectations for Regular 
Education, Special Education, and Students with 
Disabilities 

Students enrolled in special education services (SPED) have growth patterns in 

ISIP Math that differ from students in general education (Non-SPED). To determine if 

ISIP Math can detect differences in growth for students who are receiving special 

education services, we used data from the 2018-2019 school year and computed the 

gain scores between the beginning of the year (BOY) and middle of the year (MOY), as 

well as the MOY and end of the year (EOY). We obtained data from school districts that 

provided special education status. If there was no status reported, the observations were 

deleted from the analysis, and only students with a score at all three data points were 

included. These differences were computed for all students, and then for those that have 

an identified disability in the Istation database. Table 7.9 shows mean scores and the 

gain scores between students who were identified as receiving special education versus 

general education students. 
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Grade Students  Sample 
BOY 

Mean 
MOY 

Mean 
EOY 

Mean 

BOY 
to 

MOY 
Gain 

MOY 
to 

EOY 
Gain 

BOY 
to 

EOY 
Gain 

K Non-SPED 7,038 301.66 368.04 425.42 66.38 57.37 123.75 
K SPED 803 273.31 324.89 377.37 51.58 52.48 104.06 
1 Non-SPED 8,762 395.23 449.00 490.66 53.76 41.67 95.43 
1 SPED 1,326 368.18 408.68 442.38 40.49 33.70 74.19 
2 Non-SPED 8,444 455.59 480.69 494.10 25.10 13.41 38.52 
2 SPED 1,310 435.82 453.36 464.82 17.54 11.46 29.00 
3 Non-SPED 6,728 481.22 501.89 520.40 20.67 18.51 39.18 
3 SPED 1,140 456.13 466.07 482.88 9.94 16.81 26.75 
4 Non-SPED 6,298 507.30 526.03 543.78 18.73 17.75 36.48 
4 SPED 1,079 485.83 495.17 507.89 9.34 12.72 22.06 
5 Non-SPED 4,625 509.08 535.19 553.23 26.11 18.03 44.15 
5 SPED 822 489.72 501.55 513.87 11.82 12.32 24.14 
6 Non-SPED 1,657 541.27 563.88 575.96 22.61 12.08 34.69 
6 SPED 245 497.81 499.06 513.52 1.25 14.46 15.71 
7 Non-SPED 708 541.86 554.41 564.04 12.55 9.63 22.18 
7 SPED 129 501.56 504.03 509.65 2.47 5.62 8.09 
8 Non-SPED 643 547.17 570.75 571.94 23.57 1.19 24.77 
8 SPED 92 504.58 512.99 521.04 8.41 8.05 16.45 

Students in special education have gains across the year and by grade, and thus 

teachers, parents, and administrators can expect student growth in mathematics. Their 

gains are lower than general education students. In the lower grades of kindergarten 

through second grade, students in special education have scores at EOY that are like 

scores for students in general education at MOY. Starting in third grade, students 

enrolled in special education have scores at EOY that are like BOY scores for students in 

general education. In the middle school years, students enrolled in special education 

have scores that are lower than the BOY scores for students in general education. 

Results by type of disability are shown in Table 7.10. Note that only results from 

a sample size of 30 or larger are reported in this study. 

  

Table 7.9. Mean and Gain Scores for Students in General and Special Education, 2018-2019 
School Year 
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Grade 
Disability 
Type Sample 

BOY 
Mean 

MOY 
Mean 

EOY 
Mean 

BOY 
to 

MOY 
Gain 

MOY 
to 

EOY 
Gain 

BOY 
to 

EOY 
Gain 

K ID  35 245.93 242.20 263.99 -3.73 21.79 18.07 
K AU 53 259.76 337.06 401.77 77.30 64.72 142.01 
K DD 151 252.42 302.42 352.82 50.00 50.40 100.40 
K OHI 40 284.10 300.07 324.80 15.96 24.73 40.70 
K SI 508 278.51 331.25 384.25 52.74 53.00 105.74 
K SL 49 289.71 335.74 389.18 46.03 53.44 99.47 
1 ID  49 328.50 334.49 341.66 5.99 7.18 13.16 
1 LD & SLD 99 352.79 384.43 413.57 31.64 29.14 60.78 
1 AU 67 349.92 367.87 413.85 17.95 45.98 63.93 
1 DD 154 358.79 390.71 426.42 31.92 35.71 67.63 
1 OHI 69 362.76 388.80 411.44 26.03 22.65 48.68 
1 SI 688 382.23 423.05 459.73 40.82 36.68 77.50 
1 SL 50 377.28 415.48 460.77 38.20 45.29 83.49 
2 ID  64 409.98 418.21 427.80 8.23 9.59 17.82 
2 LD & SLD 245 429.54 440.32 452.20 10.78 11.88 22.66 
2 AU 75 434.29 444.09 463.06 9.80 18.96 28.77 
2 DD 132 429.03 445.29 454.54 16.26 9.26 25.52 
2 OHI 126 433.12 442.11 454.48 8.99 12.37 21.36 
2 SI 472 445.65 467.10 480.19 21.46 13.09 34.54 
3 ID  56 434.15 403.71 433.12 -30.44 29.41 -1.03 
3 LD & SLD 313 445.40 452.49 467.49 7.09 15.00 22.09 
3 AU 63 445.26 446.87 467.44 1.61 20.57 22.18 
3 DD 69 448.96 453.95 462.70 4.98 8.75 13.74 
3 OHI 120 444.45 443.00 458.42 -1.45 15.41 13.96 
3 SI 238 468.31 481.14 499.11 12.83 17.98 30.80 
4 ID  69 457.67 437.95 446.88 -19.72 8.93 -10.79 
4 LD & SLD 377 473.92 480.93 490.12 7.01 9.19 16.20 
4 AU 61 474.17 471.96 479.50 -2.21 7.54 5.33 
4 OHI 140 467.03 473.58 480.14 6.55 6.56 13.11 
4 SI 154 493.64 503.61 517.88 9.97 14.27 24.24 
5 ID  34 471.95 460.51 462.36 -11.44 1.85 -9.59 
5 LD & SLD 389 477.58 485.68 496.34 8.10 10.67 18.77 
5 AU 52 479.33 497.26 512.77 17.92 15.52 33.44 
5 OHI 112 479.61 480.36 495.07 0.75 14.72 15.46 
5 SI 60 493.84 500.25 515.93 6.41 15.69 22.10 
6 LD & SLD 162 491.23 500.70 510.87 9.47 10.17 19.64 
6 OHI 53 488.11 485.75 489.67 -2.36 3.92 1.55 
7 LD & SLD 100 505.00 506.51 516.79 1.51 10.28 11.78 
7 OHI 30 505.49 509.12 496.08 3.63 -13.04 -9.41 
8 LD & SLD 97 504.51 511.97 508.17 7.46 -3.79 3.66 

 
ID – Intellectual Disabilities 
LD, SLD – Learning Disabilities, Specific Learning Disabilities 
AU – Autism Spectrum  
OHI – Other Health Impairment 
SI – Speech Impairment 
SLI – Speech Language Impairment 
DD – Developmental Delay  

Students with intellectual disabilities (ID) typically have the lowest math scores 

and the least growth in mathematics, and in some grades these students have negative 

growth. Students with a speech impairment and those with autism have the most growth 

in math. For most students enrolled in special education, teachers can expect growth in 

Table 7.10. Mean and Gain Scores for Students in Special Education by Type of Disability, 2018-
2019 School Year 
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math ability using the ISIP Math assessment. Special attention may need to be given to 

ID students, especially if they are showing negative growth. These students are capable 

of growth in mathematics but may need intensive intervention. 

Conclusion 

This chapter investigated the reliability and validity of ISIP Math. In all studies, 

correlations with other measures were moderate to strong, and the research also 

demonstrates that the assessment can be used to identify students at risk of not meeting 

grade-level expectations at the end of the year. ISIP Math also has utility with students 

in special education, and while these students may need intensive intervention, teachers 

can expect growth for these students, although the year-end growth may be less than for 

students who are not receiving special education. 
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Introduction 

Student achievement is typically evaluated in terms of a test score from a single 

test administration, whereas student growth can be conceptualized as change in 

academic performance over multiple administration periods. Monitoring growth can be 

used to gauge how well a student is performing relative to his or her peers. More 

specifically, growth may be used as a means to promote accountability, inform data-

based decision-making, and foster partnerships within and between schools and 

districts. Monitoring individual student growth allows educators to determine whether 

students — and correspondingly teachers and schools — are making adequate annual 

progress toward state or national standards. As a result, monitoring student growth may 

improve student learning and inform decisions regarding classroom instruction and 

intervention (January et al., 2018; Jenkins et al., 2007; Pentimonti et al., 2017). 

When educators think about student growth, there are certain questions they 

seek to answer, including: 

• How much do my students need to grow to make a year’s worth of 
progress? 

• If my students start out in Tier 3, how many will grow into Tier 2 or Tier 
1? 

• How much do my students need to grow to maintain proficiency or to 
achieve more than a year’s worth of growth? 

•  How are my students growing in comparison to other students? Is their 
growth faster or slower? 

Istation provides three different approaches to view student growth across the 

school year to answer these questions. The first method is to view it as normative 

growth, which considers the growth a student needs to make to maintain the same 

percentile level. This method provides an answer to how much students need to grow to 

achieve a year’s worth of progress. The second method is to view groups of students in a 

transition matrix. This method provides information based on expected changes in 

performance categories for a group of students throughout the school year. The third 

method we provide is based on performance pathways of growth. It is similar to student 

Chapter 8: Growth 
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growth percentiles and attempts to answer the question regarding rates of growth and 

whether the student’s growth is accelerating or decelerating in comparison to other 

students who started at the same level (Betebenner, 2011). 

Expected Growth 

Normative Growth by Decile at the Beginning of the 

Year 

Istation’s normative growth is based on information that allows us to evaluate the 

extent to which students’ growth may be considered faster or slower than their academic 

peers with similar beginning-of-the-year (BOY) scores. By comparing how much growth 

a student has made relative to normed growth deciles, educators can make inferences 

about whether a student is making adequate progress or may need additional support or 

instruction. For example, if a student’s growth on overall math exceeds the growth of 

70% of their similarly scoring peers, this likely implies that the student is receiving 

adequate instruction. Students with scores in lower deciles may require additional 

support (<40th percentile). 

BOY scale scores that were collected from the 2018-2019 normed sample were 

divided into 10 initial status groups for ISIP Math Overall Score. These groups indicate 

whether a student scored… 

•  at or below the 10th percentile, 

•  at or above the 11th percentile but below the 21st percentile, 

•  at or above the 21st percentile but below the 31st percentile, 

•  at or above the 31st percentile but below the 41st percentile, 

•  at or above the 41st percentile but below the 51st percentile, 

•  at or above the 51st percentile but below the 61st percentile, 

•  at or above the 61st percentile but below the 71st percentile, 

•  at or above the 71st percentile but below the 81st percentile, 

•  at or above the 81st percentile but below the 91st percentile, or 

•  at or above the 91st percentile. 
 

After using percentile ranks to create decile categories for students’ BOY scores, 

we calculated expected growth between BOY scores and end-of-the-year (EOY) scores 

for each decile. Tables 8.1 to 8.4 show the growth that would be expected in ISIP Math 

Overall scores by grade and decile. This information can be used to identify whether a 
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student’s growth may be considered faster or slower than their academic peers with 

similar BOY scores. In the elementary grades, for example, students starting out at a 

lower achievement level tend to demonstrate greater growth compared to students in 

upper grades. 

BOY 
Percentile 
Rank 

Decile 
Pre-K 

Norm 
Growth 

Kindergarten 
Norm Growth 

1st Grade 
Norm 

Growth 

2nd Grade 
Norm 

Growth 

3rd Grade 
Norm 

Growth 

1-10 1 26 22 19 17 17 

11-20 2 46 33 28 24 25 

21-30 3 58 44 35 29 31 

31-40 4 64 52 41 35 35 

41-50 5 61 61 47 39 40 

51-60 6 56 70 52 43 44 

61-70 7 54 80 58 47 49 

71-80 8 61 91 65 52 54 

81-90 9 89 106 74 60 61 

91-99 10 140 138 94 75 76 

BOY 
Percentile 
Rank 

Decile 
Pre-K 

Norm Growth 
Kindergarten 

Norm Growth 
1st Grade 

Norm Growth 
2nd Grade 

Norm Growth 
3rd Grade 

Norm Growth 

1-10 1 29 24 20 18 18 

11-20 2 52 37 29 24 25 

21-30 3 67 49 36 30 32 

31-40 4 73 58 42 35 36 

41-50 5 70 68 48 39 41 

51-60 6 64 78 53 44 45 

61-70 7 62 89 59 48 49 

71-80 8 70 101 66 53 55 

81-90 9 102 118 75 61 62 

91-99 10 160 153 95 76 77 

  

Table 8.1: Normative Growth for ISIP Math Overall for Grades Prekindergarten to 3, by Grade 
and Decile at the Beginning of the Year (September to April) 

Table 8.2: Normative Growth for ISIP Math Overall for Grades Prekindergarten to 3, by Grade 
and Decile at the Beginning of the Year (September to May) 
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BOY 
Percentile 
Rank 

Decile 
4th Grade 

Norm Growth 
5th Grade 

Norm Growth 
6th Grade 

Norm Growth 
7th Grade 

Norm Growth 
8th Grade 

Norm Growth 

1-10 1 17 19 19 19 20 

11-20 2 25 27 26 27 29 

21-30 3 30 32 32 34 35 

31-40 4 35 36 37 38 39 

41-50 5 40 41 41 43 44 

51-60 6 45 45 46 47 48 

61-70 7 48 49 50 52 53 

71-80 8 53 55 55 56 58 

81-90 9 60 61 62 63 64 

91-99 10 75 76 75 76 76 

BOY 
Percentile 
Rank 

Decile 
4th Grade 

Norm Growth 
5th Grade 

Norm Growth 
6th Grade 

Norm Growth 
7th Grade 

Norm Growth 
8th Grade 

Norm Growth 

1-10 1 18 19 20 19 21 

11-20 2 25 27 27 28 29 

21-30 3 31 32 33 34 35 

31-40 4 36 37 37 39 40 

41-50 5 40 41 42 43 45 

51-60 6 45 46 47 48 49 

61-70 7 49 50 51 53 54 

71-80 8 54 56 56 57 59 

81-90 9 61 62 63 64 65 

91-99 10 76 77 76 77 77 

Normative growth can inform several education-related activities. Educators can 

use these growth resources to evaluate students’ current achievement status. They may 

also use these resources to guide individualized instruction and to aid in setting 

achievement and growth objectives for students in a particular school. Normative 

growth provides an opportunity to support conversations about attainment patterns as 

educators can gage whether students made gains consistent with that of other students 

in the same grade with similar performance at the beginning of the year. This is useful 

Table 8.3: Normative Growth for ISIP Math Overall for Grades 4 to 8, by Grade and Decile at the 
Beginning of the Year (September to April) 

Table 8.4: Normative Growth for ISIP Math Overall for Grades 4 to 8, by Grade and Decile at the 
Beginning of the Year (September to May) 
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because it provides the extent and magnitude by which a student’s growth exceeded or 

fell short of the growth observed for other students with similar performance at the 

beginning of the year. 

Transition Matrix Model 

The transition matrix model depicts student growth in terms of movement in 

performance level categories rather than evaluating changes in scale score points 

throughout the academic school year (Castellano & Ho, 2013a). Istation uses a decile 

framework that expresses gains as the change in performance from the beginning of the 

year (September) to the end of the year (April). BOY and EOY scale scores that were 

collected from the 2018-2019 normed sample were divided into 10 initial status groups 

for the ISIP Math Overall Score. These groups indicate whether a student scored… 

•  below the 10th percentile, 

•  at or above the 10th percentile but below the 20th percentile, 

•  at or above the 20th percentile but below the 30th percentile, 

•  at or above the 30th percentile but below the 40th percentile, 

•  at or above the 40th percentile but below the 50th percentile, 

•  at or above the 50th percentile but below the 60th percentile, 

•  at or above the 60th percentile but below the 70th percentile, 

•  at or above the 70th percentile but below the 80th percentile, 

•  at or above the 80th percentile but below the 90th percentile, or 

• at or above the 90th percentile. 

After creating the groups, a transition matrix was computed to evaluate the 

movement in performance level categories from BOY to EOY for the ISIP Math Overall 

score for pre-K to grade 8. Initial analyses showed that the patterns were similar in 

grades 6 -8, and therefore we combined these grades into one sample for the transition 

matrix. In the tables below, the numeric values in the gray cells with an asterisk next to 

them reflect the percentage of students in the normed sample that maintained the same 

decile level category from BOY to EOY. The cells below the shaded values with an 

asterisk next to them correspond to cases in which a student regresses down one or 

more deciles in BOY and EOY. Similarly, the cells above the numeric values with an 

asterisk next to them represent growth or gaining one or more decile levels from BOY to 

EOY. 

Tables 8.5 to 8.14 illustrate the change in performance categories from BOY to 

EOY for the ISIP Math Overall score. In general, students in the lower decile categories 
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show growth by gaining a level or two between BOY and EOY. Students who placed in 

the upper decile categories mostly remain in the same category between BOY and EOY. 

There is more movement between levels for students who placed in the 30th to 79th 

decile categories in BOY. While some students remain in the initial decile category, 

there are also more balanced percentages of students who either gain a level or drop a 

level. 
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BOY Decile 
Category 

EOY 
1-9 

EOY 
10-19 

EOY 
20-29 

EOY 
30-39 

EOY 
40-49 

EOY 
50-59 

EOY 
60-69 

EOY 
70-79 

EOY 
80-89 

EOY 
90-99 

1-9 18.42* 15.79 10.53 10.53 5.26 5.26 5.26 13.16 13.16 2.63 

10-19 15.91 13.64* 13.64 13.64 13.64 11.36 11.36 0 4.55 2.27 

20-29 4.55 9.09 9.09* 22.73 18.18 4.55 9.09 9.09 9.09 4.55 

30-39 16.22 13.51 5.41 2.7* 5.41 8.11 18.92 8.11 8.11 13.51 

40-49 2.7 5.41 10.81 18.92 10.81* 16.22 10.81 10.81 8.11 5.41 

50-59 20 6.67 10 3.33 10 10* 6.67 16.67 13.33 3.33 

60-69 2.63 5.26 13.16 7.89 15.79 15.79 5.26* 5.26 13.16 15.79 

70-79 0 12.5 12.5 4.17 4.17 4.17 12.5 16.67* 16.67 16.67 

80-89 10 12.5 5 5 12.5 15 5 10 10* 15 

90-99 7.69 5.13 12.82 5.13 2.56 15.38 10.26 12.82 10.26 17.95* 

  

Table 8.5: Pre-K Change in Performance Categories BOY-EOY for ISIP Math Overall by Decile Category 

Table 8.6: Kindergarten Change in Performance Categories BOY-EOY for ISIP Math Overall 

BOY Decile 
Category 

EOY 
1-9 

EOY 
10-19 

EOY 
20-29 

EOY 
30-39 

EOY 
40-49 

EOY 
50-59 

EOY 
60-69 

EOY 
70-79 

EOY 
80-89 

EOY 
90-99 

1-9 15.03* 11.9 11.48 10.23 7.72 9.6 10.44 10.65 7.52 5.43 

10-19 21.57 22.22* 15.03 10.46 7.63 7.63 3.7 3.92 2.4 5.45 

20-29 12.88 14.05 16.63* 15.93 9.6 10.07 8.9 5.39 4.68 1.87 

30-39 9.57 14.11 11.72 13.4* 12.68 11.48 11 7.18 6.7 2.15 

40-49 8.78 8.29 9.51 8.05 12.2* 11.71 11.95 14.15 9.76 5.61 

50-59 6.65 6.39 7.16 7.16 14.07 12.28* 13.3 9.97 13.81 9.21 

60-69 7.26 5.87 6.15 11.17 6.98 12.57 11.73* 14.8 15.08 8.38 

70-79 4.41 5.08 6.1 8.47 11.19 8.47 14.58 12.88* 14.24 14.58 

80-89 2.9 3.23 6.13 6.13 7.1 9.68 10 13.55 16.13* 25.16 

90-99 2.14 2.14 4.29 7.5 8.21 4.64 6.43 12.86 15 36.79* 
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BOY Decile 
Category 

EOY 
1-9 

EOY 
10-19 

EOY 
20-29 

EOY 
30-39 

EOY 
40-49 

EOY 
50-59 

EOY 
60-69 

EOY 
70-79 

EOY 
80-89 

EOY 
90-99 

1-9 28.52* 17.33 14.98 12.27 7.76 7.04 3.61 3.25 3.25 1.99 

10-19 20.48 18.88* 14.66 11.45 11.04 4.62 4.02 5.62 4.02 5.22 

20-29 12.5 19.07 11.65* 15.68 14.19 8.9 7.2 3.6 4.03 3.18 

30-39 9.09 11.31 13.3 13.75* 13.3 12.42 11.09 7.1 4.66 3.99 

40-49 6.18 7.13 12.11 12.59 12.59* 13.06 13.3 12.59 8.08 2.38 

50-59 4.48 6.5 7.17 9.19 13.45 15.02* 12.56 15.02 8.74 7.85 

60-69 3.29 4.46 6.34 5.63 11.5 15.02 14.08* 14.08 17.37 8.22 

70-79 2.65 3.45 7.16 5.31 7.96 8.22 14.06 18.04* 17.24 15.92 

80-89 1.47 2.64 5.28 5.57 4.99 8.8 12.02 13.2 20.82* 25.22 

90-99 1.1 2.48 1.93 4.13 5.23 7.16 9.37 13.5 18.18 36.91* 

BOY Decile 
Category 

EOY 
1-9 

EOY 
10-19 

EOY 
20-29 

EOY 
30-39 

EOY 
40-49 

EOY 
50-59 

EOY 
60-69 

EOY 
70-79 

EOY 
80-89 

EOY 
90-99 

1-9 37.41* 23.02 14.39 10.25 5.4 3.96 1.44 2.16 0.9 1.08 

10-19 15.61 16.4* 20.75 14.43 11.86 6.32 5.73 2.37 3.95 2.57 

20-29 10.43 12.27 14.52* 15.75 15.13 12.27 7.57 3.48 4.09 4.5 

30-39 6.43 10.79 11 15.56* 16.6 14.32 11.41 5.81 3.94 4.15 

40-49 3.89 9 9 10.63 12.07* 13.29 14.72 14.52 8.59 4.29 

50-59 3.73 6.47 7.71 5.22 12.19 14.18* 14.68 13.18 13.43 9.2 

60-69 1.76 4.69 6.74 6.45 7.33 13.49 16.72* 17.89 17.3 7.62 

70-79 2.91 4.85 6.31 6.8 5.58 6.55 11.65 19.17* 20.15 16.02 

80-89 2.52 2.52 4.2 5.32 7 7.56 9.24 18.77 19.61* 23.25 

90-99 3.63 2.42 2.42 3.63 3.02 6.04 8.46 11.48 20.54 38.37* 

  

Table 8.7: First Grade Change in Performance Categories BOY-EOY for ISIP Math Overall 

Table 8.8: Second Grade Change in Performance Categories BOY-EOY for ISIP Math Overall 
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BOY Decile 
Category 

EOY 
1-9 

EOY 
10-19 

EOY 
20-29 

EOY 
30-39 

EOY 
40-49 

EOY 
50-59 

EOY 
60-69 

EOY 
70-79 

EOY 
80-89 

EOY 
90-99 

1-9 43.82* 21.04 16.41 7.92 4.05 3.47 1.54 0.77 0.39 0.58 

10-19 16.93 21.65* 16.14 16.54 11.42 8.86 3.54 1.97 1.38 1.57 

20-29 9.73 15.16 15.61* 15.84 16.06 11.31 7.01 5.43 2.71 1.13 

30-39 5.2 10.81 12.47 13.93* 14.14 16.63 10.81 9.15 4.16 2.7 

40-49 5.2 6.19 6.93 12.38 11.63* 16.34 14.85 15.35 7.43 3.71 

50-59 3.1 5.49 9.79 9.79 12.17 13.6* 16.23 15.51 10.26 4.06 

60-69 2.06 4.37 4.88 8.23 10.03 13.62 13.37* 13.88 16.71 12.85 

70-79 0.84 3.9 2.79 6.41 6.41 8.64 15.88 16.16* 22.84 16.16 

80-89 0.57 1.42 3.12 5.1 6.52 6.8 10.76 15.3 23.8* 26.63 

90-99 1.12 1.96 1.96 3.36 3.36 7.56 8.68 11.48 17.09 43.42* 

BOY Decile 
Category 

EOY 
1-9 

EOY 
10-19 

EOY 
20-29 

EOY 
30-39 

EOY 
40-49 

EOY 
50-59 

EOY 
60-69 

EOY 
70-79 

EOY 
80-89 

EOY 
90-99 

1-9 51.35* 23.51 12.7 6.22 2.43 0.81 0.81 1.08 0.81 0.27 

10-19 18.36 22.03* 24.01 13.56 10.45 6.5 1.98 1.98 0.28 0.85 

20-29 9.2 18.1 18.68* 17.24 10.06 12.36 6.9 3.45 2.3 1.72 

30-39 2.64 9.57 8.91 18.81* 17.49 16.83 9.9 8.25 4.29 3.3 

40-49 3.19 6.96 6.67 12.75 17.1* 16.81 14.78 10.43 7.83 3.48 

50-59 1.17 2.73 7.81 9.38 14.84 16.02* 14.06 15.23 10.94 7.81 

60-69 0.97 3.57 6.17 7.79 12.34 10.71 20.45* 15.91 14.94 7.14 

70-79 1.02 0.68 1.71 5.12 6.83 11.95 16.04 18.43* 21.16 17.06 

80-89 1.48 2.21 2.21 3.32 5.9 8.86 10.33 18.45 21.77* 25.46 

90-99 0 0.43 2.6 1.73 2.6 3.9 8.23 9.52 24.68 46.32* 

  

Table 8.9: Third Grade Change in Performance Categories BOY-EOY for ISIP Math Overall 

Table 8.10: Fourth Grade Change in Performance Categories BOY-EOY for ISIP Math Overall 
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BOY Decile 
Category 

EOY 
1-9 

EOY 
10-19 

EOY 
20-29 

EOY 
30-39 

EOY 
40-49 

EOY 
50-59 

EOY 
60-69 

EOY 
70-79 

EOY 
80-89 

EOY 
90-99 

1-9 48.31* 24.58 13.28 6.5 3.67 1.41 0.85 0.56 0.28 0.56 

10-19 14.64 27.41* 22.12 13.08 9.97 4.98 4.36 1.56 1.25 0.62 

20-29 10.04 13.38 18.59* 18.96 18.22 7.06 8.18 4.09 0.74 0.74 

30-39 4.47 8.59 11.68 12.37* 17.18 15.81 15.46 5.84 5.5 3.09 

40-49 2.64 6.04 13.96 12.83 9.81* 17.74 15.85 9.06 7.17 4.91 

50-59 0.69 2.78 5.9 10.42 14.24 18.4* 14.58 15.63 7.29 10.07 

60-69 0 1.94 3.4 8.25 11.65 13.59 13.59* 17.96 16.02 13.59 

70-79 0.43 0.43 3.03 4.76 9.96 9.52 12.99 17.32* 20.35 21.21 

80-89 0 0 1.85 3.24 3.7 6.94 9.72 19.44 28.24* 26.85 

90-99 0 0 1.02 1.02 1.02 4.57 7.61 17.77 30.46 36.55* 

BOY Decile 
Category 

EOY 
1-9 

EOY 
10-19 

EOY 
20-29 

EOY 
30-39 

EOY 
40-49 

EOY 
50-59 

EOY 
60-69 

EOY 
70-79 

EOY 
80-89 

EOY 
90-99 

1-9 54.24* 16.95 15.25 10.17 1.69 1.69 0 0 0 0 

10-19 20.31 28.13* 12.5 4.69 10.94 10.94 6.25 3.13 3.13 0 

20-29 15.09 15.09 18.87* 5.66 11.32 11.32 5.66 5.66 5.66 5.66 

30-39 8.62 10.34 18.97 20.69* 10.34 12.07 6.9 6.9 1.72 3.45 

40-49 1.67 8.33 10 20 16.67* 10 5 10 13.33 5 

50-59 1.59 7.94 11.11 19.05 9.52 11.11* 14.29 6.35 12.7 6.35 

60-69 0 7.41 5.56 5.56 9.26 14.81 14.81* 18.52 11.11 12.96 

70-79 0 0 0 6.9 17.24 13.79 17.24 15.52* 13.79 15.52 

80-89 0 0 4.84 6.45 6.45 8.06 14.52 22.58 20.97* 16.13 

90-99 0 1.85 1.85 0 5.56 7.41 16.67 11.11 24.07 31.48* 

Table 8.11: Fifth Grade Change in Performance Categories BOY-EOY for ISIP Math Overall 

Table 8.15: Six through Eighth Grade Combined Change in Performance Categories BOY-EOY for ISIP Math Overall 
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This information may be useful to educators as it illustrates what they can expect 

at the class or school level in terms of movement throughout performance levels from 

BOY to EOY. More specifically, the transition matrix provides an insight into the 

percentage of students on track to maintain or reach proficiency. It should be noted that 

a change in categories can be associated with a wide range of actual gains depending on 

the student’s standing within the category regions. 

Transitions through past categories can also support predictions about a 

student’s future category location under the assumption that transitions across 

categories will resume in a linear pattern over time. For example, if a student improves 

one decile level between BOY and EOY in grade 3, it might be reasonable to assume that 

the student will improve one or more decile categories in grade 4. In this hypothetical 

context, the transition matrix functions as a coarse trajectory model, where an increase 

in one decile category is extrapolated and assumed to resume to future time points. 

Another useful feature of the transition matrix is that average values for groups of 

students are interpretable as a type of average growth. For example, the matrix cells 

correspond to the number of decile categories a student has gained or lost; thus the 

average over all students is the average gain in decile categories for that particular 

group. 

Expected Growth Pathways 

Expected growth pathways are another feature that allows educators to monitor 

and compare the overall math skill development of their students over the course of the 

school year to the growth of a nationally representative sample of students with similar 

achievement at BOY. Expected growth pathways may be used to set growth targets and 

monitor student progress. By comparing how much a student has gained relative to 

normed growth pathways, educators can make inferences about whether a student is 

making adequate progress. 

A nationally representative 2018-2019 normed sample was used for students in 

pre-K through grade 8. BOY ISIP Math Overall scores were placed into five BOY status 

groups. These BOY groups are linked to Istation’s instructional levels, which are set to 

identify students at risk for developing reading deficiencies. 
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These instructional levels indicate whether a student at the beginning of 

the year scored… 

• at or below the 20th percentile, 

• at or above the 21st percentile but below the 41st percentile, 

• at or above the 41st percentile but below the 61st percentile, 

• at or above the 61st percentile but below the 81st percentile, or 

• at or above the 81st percentile. 

After assigning BOY scores to BOY status groups, a gain score was computed for 

each student by subtracting the BOY overall reading score from the EOY overall reading 

score. The resulting gain scores were used to create percentile gains by dividing gain 

scores into quantiles within each BOY status group. Higher percentile gains indicate that 

the student showed more growth relative to other students in the same BOY status 

group. Labels were then assigned to expected growth pathways within each BOY status 

group where a gain score falling between the 41st and 60th percentiles can be classified 

as falling within the typical growth pathway. Similarly, scores that fall between the 61st 

and 80th percentiles can be classified as above typical, whereas scores above the 80th 

percentile can be classified as accelerated. Table 8.12 summarizes the growth 

descriptions. 

Pathways 
Percentile 
Range 

Growth 
Descriptor 

   

1 ≤40th Below 
Typical 

2 41st - 60th Typical 

3 61st - 80th Above 
Typical 

4 >80th Accelerated 

Expected growth pathways provide a metric that accounts for differing patterns 

of growth across grades and BOY ability level. Table 8.13 illustrates these expected 

growth pathways within each BOY instructional group for ISIP Math Overall scores. 

Similar to the transition matrix, we combined grades 6 – 8 because growth pathways 

were similar for these grades. 

One intuitive finding is that students starting out in a lower BOY instructional 

group are expected to demonstrate greater growth than students who are already in a 

higher BOY instructional group within the same grade. Similarly, expected growth is 

greater for students in the elementary grades compared to students in upper grades. 

Additional analyses were conducted to examine the impact of prescribed growth goals 

Table 8.12. Pathway Growth Descriptions 
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and student location at the EOY. In general, students who were in level 1 or level 2 in 

the BOY status group moved up two levels by setting an accelerated target. Setting an 

above-typical target usually results in moving up one level, whereas a typical target 

usually results in staying within the same level. These findings are particularly 

consistent in the early grades where students have much more room to improve their 

skill sets.
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BOY Status 
Group 

Percentile 

Growth 
Pathway Pre-K K Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6-8 

<21st Below Typical <150 <132 <104 <38 <40 <25 <20 <14 

NA Typical 150-185 132-192 104-134 38-57 40-56 25-41 20-37 14-32 

NA Above Typical 186-246 193-247 135-180 58-92 57-86 42-67 38-62 33-62 

NA Accelerated ≥247 ≥248 ≥181 ≥93 ≥87 ≥68 ≥63 ≥63 

21st - 40th Below Typical <165 <127 <95 <32 <31 <23 <29 <15 

NA Typical 165-192 127-178 95-123 32-52 31-45 23-38 29-48 15-32 

NA Above Typical 197-226 179-222 124-158 53-81 46-67 39-61 49-70 33-59 

NA Accelerated ≥227 ≥223 ≥159 ≥82 ≥68 ≥62 ≥71 ≥60 

41st - 60th Below Typical <129 <122 <98 <34 <31 <23 <35 <6 

NA Typical 129-164 122-158 98-125 34-56 31-45 23-38 35-57 6-32 

NA Above Typical 165-214 159-199 126-150 57-83 46-68 39-58 58-78 33-55 

NA Accelerated ≥215 ≥200 ≥151 ≥84 ≥69 ≥59 ≥79 ≥56 

61st - 80th Below Typical <125 <111 <87 <31 <33 <31 <41 <9 

NA Typical 125-138 111-145 87-111 31-50 33-50 31-48 41-56 9-33 

NA Above Typical 139-184 146-190 112-141 51-75 51-73 49-70 57-77 34-58 

NA Accelerated ≥185 ≥191 ≥142 ≥76 ≥74 ≥71 ≥78 ≥59 

>80th Below Typical <64 <31 <50 <20 <40 <37 <36 <16 

NA Typical 64-96 31-88 50-83 20-42 40-60 37-56 36-55 16-43 

NA Above Typical 97-133 89-134 84-116 43-73 61-83 57-82 56-77 44-72 

NA Accelerated ≥137 ≥135 ≥117 ≥74 ≥84 ≥83 ≥78 ≥73 

Table 8.13: Expected Growth Pathways (Gains) for ISIP Math Overall BOY-EOY by ISIP Instructional Levels 
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Expected growth pathways can inform decisions about instruction and 

intervention by providing normative information regarding growth, which may be 

particularly useful in schools that implement multi-tiered systems of support. Educators 

can use this type of growth information to evaluate the extent to which the instructional 

approach is working or whether modifications are necessary to meet students’ needs. 

Data based on a one-time assessment do not support this type of decision-making 

because these data refer to students’ status rather than their growth. Expected growth 

pathways can be used to identify how quickly students are growing even if they are not 

on track to meet predefined criteria such as criterion related standards. 

Pathways of growth promote inferences that account for students’ initial status, 

which is key to interpreting growth, since growth is often related to BOY performance 

but not necessarily in an intuative manner. When comparing a given pathway of growth 

(e.g., Typical) across BOY instructional levels, students with the highest BOY scores (i.e., 

those in level 5) tend to improve less over the course of the year than students in level 1 

at the beginning of the year. 
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